Birla Institute of Technology and Science, Pilani

EEE F341/INSTR F341 Analog Electronics

Second Semester 2021-2022 MID-SEMESTER TEST (OPEN BOOK)

Time: 90 min

Max. Marks: 70

Date: 09-03-2022

Note: Assume all op-amps have $V_{Sat} = \pm 10$ V, if not mentioned in the question.

[6M]

Q1. (A) Figure shows a differential amplifier based on an Op- Amp. Suppose that the CMRR of the Op Amp is 100 dB. Assume 4 k Ω input resistance for the differential amplifier with $R_1=R_2$ and $R_3=10k\Omega$.

Answer the following:

(i). Differential output voltage.

(ii). Common mode output voltage.

[6M]

Q1. (B). Figure shows an Op Amp based filter circuit. Answer the following: **[6 Marks]** (i) Identify the nature of the active filter and its order. For the given circuit, determine the value of R_1 such that the phase difference between input voltage

and output voltage is equal to $\left(\frac{\pi}{2}\right)$ radian. Assume a sine wave input with frequency of 5 *KHz*.

(ii) For the given circuit, determine the phase difference (in degrees) between V_i and V_o for $R_1 = 100 K\Omega$.

[9M]

Q1. (C) Figure shows a two op-amps circuit. In the given circuit, assume $R_1 = R_3 = 560 \Omega$ and $R_F = R_2 = 5.6 K\Omega$. Further, $V_{i1} = -2 V$ and $V_{i2} = -1.5 V$. Suppose that input resistance $R_i = 2 M\Omega$ and the open-loop gain A = $2 \times 10^5 V/V$ for the IC 741 op amp used in the circuit. Answer the following:

Answer the following:

(i). Determine an expression for voltage gain and compute its value.

(ii). Obtain expressions for the input resistances R_{i1} and R_{i2} . Compute their

values.

(iii). Compute the output voltage.

(iv). Identify the type of the amplifier.

[10 M]

Q2. (A) Find the values of the R_1 , R_2 , C_1 , and C_2 components used in the following circuit to construct a Butterworth bandpass filter having lower cutoff at 1kHz and higher cutoff at 10kHz. Determine the order of the filter. What is the passband gain?

[8M]

Q2. (B) Find the transfer function of the following circuit and identify the type of operation.

Use R = 10 k Ω and C = 0.01 μ F. Draw and label the output waveform V_o(t) for the given input V_i(t)=sin 2000 π t.

[10 M]

Q2. (C) Design a KHN circuit to realize a bandpass filter with center frequency of 1 kHz and 3-dB bandwidth of 100 Hz. Use, 22 nF capacitor only. Draw the complete KHN circuit, specifying all the component values. Find the center frequency gain. Given $R_1 = R_2 = R_F = 10 \text{ k}\Omega$.

[10 M]

Q3. (A) Design the following band pass filter to have unity voltage gain for the pass band from 300Hz to 30KHz. (Consider $C_2 = 1000$ pF). Also, find center frequency (f_o) and quality factor (Q).

[11 M]

Q3. (B) Design a V-I based electronic voltmeter to show $2M\Omega$ input impedance and can measure DC voltage ranges from 0-1V, 0-5V and 0-20V. Use PMMC having full scale deflection (f_{sd}) as 100µA and meter resistance as $2K\Omega$. Extend the design for similar ranges of input as RMS ac voltage.