BITS PILANI K. K. BIRLA GOA CAMPUS
 SEMESTER-II, 2022-2023

POWER ELECTRONICS (MIDSEM) EEE_INSTR F342 (Part-A)
Date-15/03/2023
Total Marks: $10 \times 3 \mathrm{M}=30$
Duration: 30 min
[Take necessary assumptions with proper justifications whenever required]
[Write your answers up to four decimal places]

1. Two loads L_{l} and L_{2} are connected in parallel to each other as shown below:

The current expression of each load is given as:

$$
\begin{aligned}
& i_{1}=30 \sin 20 t-15 \sin 40 t+8 \sin 60 t-6 \sin 80 t \\
& i_{2}=8 \cos 20 t+4 \sin \left(40 t+30^{\circ}\right)+2 \sin 80 t
\end{aligned}
$$

Find the RMS value of the source current (Is_rms, in Amps).
2. Find the source current THD given in Question No-1 (THD, in \%).
3. Find the source power factor (pf_source) in Question No-1, if the source voltage expression given in Question No-1 is $v_{s}=230 \operatorname{Sin} 20 t$.
4. A resistive switching circuit is connected to a source of 400 V . It is operated at a switching frequency of 100 kHz . Turn-on time of the Thyristor is 200 ns . A small leakage current of 0.8 A still flow during the off state of the Thyristor. Find the average power loss (P_{-}on, in W) during the turn on process of the Thyristor if $\mathrm{R}=4$ Ohm.
5. A resistive load of 1000 Ohm is connected to a single-phase supply of $230 \mathrm{~V}, 50 \mathrm{~Hz}$, through a half wave diode rectifier. Calculate the magnitude value of the average voltage across the diode (V_do, in Volts) if the diode has an internal resistance of 20 Ohms.
6. Find the current through diode $\mathrm{D}_{2}\left(\mathrm{I}_{-} 2\right.$, in Amps) in the circuit given below

7. The ratings of two heaters are $230 \mathrm{~V}, 1 \mathrm{~kW}$ and $230 \mathrm{~V}, 1.5 \mathrm{~kW}$ respectively. The two heaters are connected in parallel to each other and the combination is supplied by a single-phase AC supply of $230 \mathrm{~V}, 50 \mathrm{~Hz}$ through a diode. Calculate the power delivered to the two heaters (P_{-}heat, in kW).
8. From the wave form of $x(t)$ find out the dc component a_{0} in the Fourier series expansion of $x(t)$ which is represented as:

9. The minimum value of the gate triggering voltage and current of a Thyristor are 2 V and 100 mA respectively. A resistor of 12 Ohms is connected across the gate-cathode terminals to by-pass thermally generated leakage current. Find the value of resistance ($\mathrm{R} _\mathrm{s}$, in Ohm) to be connected in series with the gate circuit in order to ensure turn-on of the Thyristor, if triggering supply voltage is 10 V .
10. A three-phase full-controlled rectifier feeds power to a resistive load of 10 Ohms. For a firing angle of 30 degrees, the load takes 5 kW power. Find the magnitude of per phase input supply voltage (V_ph, in Volts). The load current is assumed to be constant.

BITS PILANI K. K. BIRLA GOA CAMPUS

SEMESTER-II, 2022-2023
POWER ELECTRONICS (MIDSEM) EEE_INSTR F342 (Part-B)
Date-15/03/2023
Total Marks: $15 \times 3 \mathrm{M}=45$
Duration: 60 min
[Take necessary assumptions with proper justifications whenever required]
[Write your answers up to four decimal places; Prepare an index at the first page; Answers should be according to the order of the questions]

Q1. A single-phase 50 Hz half wave rectifier circuit is shown below:

The switch S_{1} is opened and switch S_{2} is closed.
(a) Draw the output voltage waveform of V_{0} for two complete cycles and write an expression of V_{0} to define it.
(b) Derive the values of Fourier series coefficients a_{0}, a_{k} and b_{k} for the output voltage waveform of V_{0}. Here, a_{k} and b_{k} are the kth coefficients of the cosine and the sine terms in the Fourier series. [2+3+3]
Now, the switch S_{1} is closed and switch S_{2} is opened simultaneously. Consider the extinction angle (β) is greater than π radian.
(c) Derive the RMS value of output voltage in terms of the source voltage.
(d) Draw the waveforms for $v_{D}, i_{S}, i_{F D}$ and v_{R} (Voltage across resistance R) for two complete cycles.

Q2. A RL load is connected to a non-sinusoidal voltage source of v_{s} as shown below:

The expression of the non-sinusoidal source voltage v_{s} is given as

$$
v_{s}=63.60+100 \operatorname{Sin} 377 \mathrm{t}-42.40 \cos 754 \mathrm{t} \text { Volt }
$$

Assume the initial current through the inductor is zero.
(a) Find the expression of source current $i(t)$ by deriving the complementary function $\mathrm{i}_{\mathrm{c}}(\mathrm{t})$ and the particular integral $\mathrm{i}_{\mathrm{p}}(\mathrm{t})$.
(b) After some time, the circuit reaches steady state. Now, find the RMS value of Source current (I_rms, in Amps), RMS value of the voltage across resistor (V_R in Volts) and RMS value of the voltage across Inductor (V_L, in Volts).

Q3. A three-phase full wave fully controlled rectifier is supplied from a three-phase source of $415 \mathrm{~V}, 50$ Hz . The load consists of a series combination of resistor with $\mathrm{R}=8 \mathrm{Ohm}$ and a large inductance that makes the load current constant. For a firing angle of 30 degrees, Find
(a) Average output voltage (V_o in Volts) and load current (I_o in Amps).
(b) Average value of Thyristor current (IT_o in Volts) and RMS value of Thyristor current (IT_or in Amps.

Now, a source inductance of 1.5 mH per phase is inserted. Considering the same load current, find out
(c) The new average output Voltage (V_onew1, in Volts).
(d) The commutation angle (mu , in degree).

Now, along with the source inductance of 1.5 mH per phase, a source resistance of 0.5 Ohms is also inserted in each phase. Forward voltage drop of 2 V for each and every thyristor is considered. Determine
(e) The new average output voltage (V _onew 2 in Volts), considering the same load current.

