BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI Modern Control Systems (EEE F422) [1st Semester, 2023-2024]

Comprehensive Exam: Part-A (Closed Book)

Estimated Time: 2 Hrs	Max Marks: 60	Date: 08/12/23
•	ll notations and abbreviations carry their star arts of Q1 must be answered at one place.	ndard meanings.
Q1. (i) An 8 th order LTI system has pole look like if the system is represented in	s at $-0.5 \pm j0.5, -0.5 \pm j0.5, -2, -2, -2, -1$ Jordan canonical form?	5. How will the system matrix A [3]
(ii) Determine the sign definiteness of the	ne quadratic function $x_1^2 + x_2^2 - x_1 x_2$.	[1]
(iii) What do you mean by stabilizability	and detectability?	[2]
(iv) Write the dimensions of the contro system.	llability and observability matrices for a two i	input single output 3 rd order LTI [2]
	+ Bu ; $y = C\underline{x} + Du$ of an LTI SISO system, d ne the MATLAB command available for this pu	
(vi) What is the full form of LQG regulat	or?	[1]
(vii) Which of the properties of an LTI systransformation?	stem among controllability, observability and s	tability get affected by similarity [1]
(viii) What are limit cycles?		[2]
(ix) What is the utility of LaSalle's invaria	ance principle for stability analysis of nonlinea	r systems? [1]
(x) What is describing function? What is	its usefulness?	[2]
	onversion of Continuous Time (CT) model to MATLAB command available to convert CT models of the transfer function $\frac{1}{s^2+1}$.	

Q2. Convert the state space model of a 2^{nd} order LTI system as given below to DCF and therefrom obtain an approximate 1^{st} order model using residualization method so that the DC gain is preserved.

$\underline{\dot{x}} = \begin{bmatrix} 0 & 1\\ -10 & -11 \end{bmatrix} \underline{x} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u$	
$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \underline{x}$	[12]

Q3. A 2nd order nonlinear dynamic system is described by the following state equations

$$\dot{x}_1 = -2\sin x_1 + x_1^3 + x_2$$
$$\dot{x}_2 = -x_2^2 - x_1^2 x_2 + u$$

where x_1 always remains within the range $\pm 1 \, rad$. The objective is to keep x_1 at zero. Assuming both the states are measurable, design a backstepping control such that the favorable terms in the dynamics are not cancelled and only the unfavorable terms are cancelled. [14]

Q4. (i) As we know, a state estimator accepts the plant input and plant output as input signals and generates the estimate of the state as the output signal. Therefore, if the estimator is visualized as a dynamic system in itself, obtain the general expression of its transfer function. Consider a linear scenario. [4]

(ii) Consider a dynamic system described by

 $\dot{x} = 2x + u - 2\dot{u}$; x(0) = 2

Determine the optimal control $u^*(t)$ which will transfer the initial state to the origin in 2 sec minimizing the total control energy $J = \frac{1}{2} \int_0^2 u^2 dt$ [8]

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI Modern Control Systems (EEE F422) [1st Semester, 2023-2024] Comprehensive Exam: Part-B (Open Book)

Estimated Time: 1 Hr

Max Marks: 30

[5]

(Answer all questions. All notations and abbreviations carry their standard meanings.)

Q1. (i) A general nonlinear MIMO dynamic system is described by

$$\frac{\dot{x}}{\underline{y}} = \underline{f}(\underline{x}, \underline{u})$$
$$\underline{y} = \underline{h}(\underline{x}, \underline{u})$$

Develop a theory to design a local linear state observer. Clearly explain how the observer gain L can be designed and also derive the observer equation. [8]

(ii) Apply the theory developed in Q1(i) above, to design a linear state observer for the following system:

$$\dot{x}_1 = -x_1 + e^{-u}x_2$$
$$\dot{x}_2 = x_1x_2 + u$$
$$y = x_1 + x_2 + (1 + x_1x_2)u$$

Design the observer L near the equilibrium point $x_1 = 0$, $x_2 = 0$, u = 0 ensuring that the estimation errors decay at least at a rate of e^{-2t} . Also write the observer equation. [8]

Q2. (i) Consider a 1st order LTI system given by

$$\dot{x} = x + u$$

The objective is to design an LQR such that the performance index, $J = \frac{1}{2} \int_0^\infty (qx^2 + ru^2) dt$ is minimized.

Show that the resulting controller gain will be high for high values of q and low values of r.

(ii) Consider a discrete time stochastic system given by

$$\underline{x}_{k} = \begin{bmatrix} 0 & 1\\ -1 & 1 \end{bmatrix} \underline{x}_{k-1} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u_{k-1} + \begin{bmatrix} 1\\ 0 \end{bmatrix} w_{k-1}$$
$$\underline{z}_{k} = \begin{bmatrix} 0 & 1 \end{bmatrix} \underline{x}_{k-1} + v_{k}$$

where the strengths of the white process disturbance and white measurement noise are 10 and 5 respectively. Assuming the initial estimation error covariance to be $P_0 = \begin{bmatrix} 10 & 0\\ 0 & 10 \end{bmatrix}$, compute the Kalman gain, a-priori estimation error covariance for k = 1,2. [9]
