BIRLA INSTITUE OF TECHNOLOGY AND SCIENCE, PILANI

FIRST SEMESTER 2023-2024
EEE F426 FIBER OPTICS AND OPTOELECTRONICS
COMPREHENSIVE EXAMINATION (OB) December 20, 2023
Max. Marks: 80

Note: All questions equal marks. State valid assumptions and consider typical values wherever necessary.

[1] The separation of spectral lines $\Delta \lambda$ is $1 \mu \mathrm{~m}$ for a $\mathrm{GaAs}(n=3.65)$ laser. Find the laser cavity length and estimate the number of longitudinal modes emitted by the laser at 850 nm . Also, determine the threshold gain coefficient when effective loss coefficient is $1.5 / \mathrm{mm}$ at a confinement factor of 0.8 .
[2] Calculate half-wave voltage for a LiNbO_{3} longitudinal electro-optic modulator assuming that $r_{33}=30.8$ $\times 10^{-12} \mathrm{~m} / \mathrm{V}$ is the relevant electro-optic coefficient at 850 nm . Estimate the range of transmittance (in dB) that can be achieved at this half wave voltage if applied for intensity modulation when $V_{0}=10 \mathrm{~V}$ and $f_{\mathrm{m}}=2.5 \mathrm{GHz}$.
[3] Estimate the source to fiber coupling efficiency and the optical loss (in dB) for a laser diode forward biased with a current of 300 mA and a voltage of 3 V . Assume the fiber has a numerical aperture of 0.244 while the laser has an internal quantum efficiency of 0.8 . Use the wavelength assumed and threshold gain coefficient calculated in problem [1].
[4] Two step-index single mode fibers with $8 \mu \mathrm{~m}$ diameter and a core index of 1.488 are spliced without any extrinsic misalignments but due to distinct relative refractive index differences, $\Delta_{1}=0.0019$; $\Delta_{2}=0.0021$, both fibers suffer from connection losses due to intrinsic parameters i.e. NA and MFD (w_{P}). Estimate the total loss (in dB) at the splice. Assume $\lambda=1050 \mathrm{~nm}$.
[5] Estimate the critical radius of curvature of the step-index single mode fibers mentioned in problem [4]. Estimate the bending loss (in dB) when the loss can generally be represented by a radiation attenuation coefficient, $\alpha_{R}=c_{1} \exp \left(-c_{2} R_{c s}\right)$ where $R_{c s}$ is the radius of curvature of the fiber bend and c_{1}, c_{2} are constants which are independent of R_{cs}. Assume c_{1}, c_{2} are unity.
[6] Confirm if both step-index single mode fibers mentioned in problem [4], behaves as multimode fibers when their relative refractive index differences are scaled up by a factor of 10. Determine the overall dispersion in the multimode fiber with largest number of modes propagating through it. Assume typical values needed for your calculation but at 1050 nm .
[7] Is it possible to compensate the losses calculated in problem [4] and [5] considering magnitude of losses (in dB) together, using a Raman amplifier? If yes, then determine the input pump power required for such amplification considering physical length of fiber amplifier do not exceed 5 km . Assume typical values needed for your calculation but at 1050 nm .
[8] An InGaAs avalanche photodiode ($\mathrm{M} \sim 50, \mathrm{x} \sim 0.4$) is operating at room temperature (300 K) at a wavelength of 1050 nm . Its quantum efficiency is 40% and the incident optical power is 300 nW . Assume that the primary dark current of the device is 2 nA , and the load resistor is 1000 ohms. Estimate the effective bandwidth required to achieve $S / N \geq 30 \mathrm{~dB}$ at the input end of an amplifier of the receiver.
[9] Use the effective bandwidth estimated in problem [8] to calculate required CNR in the same case. Consider modulation index of 0.5 , noise factor of 2 and RIN of $-144 \mathrm{dBm} / \mathrm{Hz}$ to support your calculations.
[10] (a) Calculate the line width of source when SBS threshold power for the best possible case is 15 mW . Consider Brillioun gain of $6 \times 10^{-11} \mathrm{~m} / \mathrm{W}$, effective area of $55 \times 10^{-12} \mathrm{~m}^{2}$, and effective length of 20 km at a pump wavelength of 1550 nm . (b) A light of wavelength 1550 nm is propagating through a FBG based sensor with $\Lambda=500 \mathrm{~nm}$. Due to change in pressure, the effective index of FBG changes at the rate of $10^{-6} \mathrm{KPa}^{-1}$. The effective index of the core is $\mathrm{n}=1.488$ and the change in the periodicity of gratings with change in pressure $10^{-9} \mathrm{KPa}^{-1}$. Find the corresponding shift in Bragg's wavelength for a pressure change of 25 KPa .

