BITS, Pilani - K. K. Birla Goa Campus

EEE F435 DIGITAL IMAGE PROCESSING
Semester I 2022-23, Comprehensive Exam

Date: December 30, 2022; Time: 10:00 am - 1:00 pm

1. (i) Consider an image $f(x, y)$ of size $M \times N$. Implement the gradient $\boldsymbol{\nabla}_{\boldsymbol{x}, \boldsymbol{y}}$ and the Laplacian $\boldsymbol{\nabla}_{\boldsymbol{x}, \boldsymbol{y}}^{\boldsymbol{y}}$ of $f(x, y)$ by spatial filtering using two 1-D spatial masks respectively. Write the expressions and coefficients of the two 1-D spatial masks $\left\{\boldsymbol{h}_{\nabla_{x}}(\boldsymbol{x})\right.$ and $\left.\boldsymbol{h}_{\nabla_{y}}(\boldsymbol{y})\right\}$ for $\nabla_{x, y}$ and the two 1-D spatial masks $\left\{\boldsymbol{h}_{\nabla_{x}^{2}}(\boldsymbol{x})\right.$ and $\left.\boldsymbol{h}_{\nabla_{\boldsymbol{y}}^{2}}(\boldsymbol{y})\right\}$ for $\nabla_{x, y}^{2}$. Find the expressions for the equivalent 1-D frequency domain filters: $\boldsymbol{H}_{\nabla_{x}}(\boldsymbol{u}), \boldsymbol{H}_{\nabla_{y}}(\boldsymbol{v}), \boldsymbol{H}_{\nabla_{x}^{2}}(\boldsymbol{u})$ and $\boldsymbol{H}_{\nabla_{y}^{2}}(\boldsymbol{v})$. (6 Marks)
(ii) Consider the binary image in Fig. 1-a, $f(x, y)$ of size 12×32 consisting of alternating stripes of white (1) and black (0) in both spatial directions, each stripe being 2 pixels wide. Find the frequency domain coordinates $(\boldsymbol{u}, \boldsymbol{v})$, where $u=$ $-6,-5, \ldots,-1,0,1, \ldots, 5$ and $v=-16,-15, \ldots,-1,0,1, \ldots, 14,15$, of the three most dominant frequency components in the centered-DFT of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\mathcal{F}}{\Leftrightarrow} \boldsymbol{F}(\boldsymbol{u}, \boldsymbol{v})$. Write the magnitude of the highest frequency component in $\boldsymbol{F}(\boldsymbol{u}, \boldsymbol{v})$. Find the frequency domain mask $\boldsymbol{H}(\boldsymbol{u}, \boldsymbol{v})$ required to filter out the white stripes in the horizontal direction from $f(x, y)$ to obtain the output image $g(x, y)$ shown in Fig. 1-b. Write the steps involved in filtering. ----

Fig. 1-a

Fig. 1-b --------- (14 Marks)

Note: The black borders are not part of the images. For $H(u, v)$, it is sufficient to write the locations where $H(u, v)$ is zero and non-zero and the magnitudes of the non-zero values.
2. Consider the $4 \times 6,8$-bit image $f(x, y)$ given below. A 512 -word dictionary with the starting content shown in Fig. 2-a is assumed. Locations 256 through 511 initially are unused. Compress the image using the LZW coding and complete the table shown in Fig.
$f(x, y)=\left[\begin{array}{llllll}21 & 21 & 95 & 169 & 243 & 243 \\ 21 & 21 & 95 & 169 & 243 & 243 \\ 21 & 21 & 95 & 169 & 243 & 243 \\ 21 & 21 & 95 & 169 & 243 & 234\end{array}\right]$ 2-b. Calculate the compression $\left(\boldsymbol{C}_{\boldsymbol{L} Z W}\right)$ achieved. \qquad (15 Marks)

Compress the encoded output (i.e., the third column in the table in Fig. 2-b) using quaternary \{0, 1, 2, 3\} Huffman coding. Show all the steps involved in the Huffman coding. Compute the compression ($\boldsymbol{C}_{\boldsymbol{H}}$) achieved.

Dictionary Location	Entry
0	0
1	1
\vdots	\vdots
255	255
256	-
\vdots	-
511	

Fig. 2-b

Fig. 2-a
3. (i) Consider the image I with an object A and the eight structuring elements B_{i} for $i=1,2, \ldots, 8$, their origins are indicated by the underlined pixels. Compute the morphological operations: \qquad (5 Marks)
a) $A_{1}=\left\{z \mid\left(B_{1}\right)_{z} \subseteq A\right.$ and $\left.\left(B_{2}\right)_{z} \subseteq A^{c}\right\}$
b) $A_{2}=\left(A \ominus B_{3}\right) \cap\left(A^{c} \ominus B_{4}\right)$
c) $A_{3}=\left(A \ominus B_{5}\right)-\left(A^{c} \ominus B_{6}\right)^{c}$
d) $A_{4}=\left(A \ominus B_{7}\right)-\left(A^{c} \oplus \hat{B}_{8}\right)$
e) $A_{5}=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0
0	0	1	1	1	1	0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	0	0	1	1	1	1	1	0	0	0
0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0
0	0	1	1	0	0	0	0	0	1	1	1	1	0	0	0
0	0	1	1	0	0	0	0	0	1	1	1	1	0	0	0
0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

\times	1	\times
0	$\mathbf{1}$	1
0	0	\times

B_{1}

\times	0	\times	
1	$\underline{\mathbf{0}}$	0	
1	1	\times	
B_{2}			

\times	1	\times
1	$\underline{\mathbf{1}}$	0
\times	0	0
B_{3}		

B_{4}

\times	1	1
0	$\underline{\mathbf{0}}$	1
\times	0	\times

B_{5}
B_{6}

0	0	\times
0	$\mathbf{1}$	1
\times	1	\times

B_{7}

1	1	\times
1	$\underline{\mathbf{0}}$	0
\times	0	\times

B_{8}
(ii) Consider the 4-bit image $I(x, y)$ given below containing a coin and its shadow in a background (without the dark border). Using image segmentation techniques (which includes point, line and edge detection, and thresholding), segment the image into two binary images: I_{1}, consisting of only the coin in a background and I_{2}, consisting of only the shadow in a background. Show all the steps involved and write the two output images. --
----- (15 Marks)

If the image I is corrupted by a Gaussian noise with mean 7 and a standard deviation of 4 intensity levels, would your segmentation still work? Explain.

The intensity transformations T_{i} for $i=1,2,3$ are used on the input image I to obtain the output images F_{i}. Would your segmentation still work on the output images F_{i} i.e., after the transformations? Explain.
4. (i) Find the shape number and order of the shape number for the given boundary (Use 4-directional code) in Fig. 4-a. Each line segment is of equal length. \qquad (4 Marks)
(ii) Consider the feature matrix x representing a set of four observations (samples) of three features of an object. Each row in x represents a sample.

Fig 4-a
a) Calculate the covariance matrix for \boldsymbol{x}. \qquad (4 Marks)
b) Find the transformation from x to y using the Hotelling Transform relation. Write the transformation matrix A. (8 Marks)
c) Calculate the covariance matrix for y.

