BITS, Pilani – K. K. Birla Goa Campus EEE F435 DIGITAL IMAGE PROCESSING Semester I 2022-23, Comprehensive Exam Date: December 30, 2022; Time: 10:00 am – 1:00 pm

1. (i) Consider an image f(x, y) of size $M \times N$. Implement the gradient $\nabla_{x,y}$ and the Laplacian $\nabla_{x,y}^2$ of f(x, y) by spatial filtering using two 1-D spatial masks respectively. Write the **expressions** and **coefficients** of the two 1-D spatial masks { $h_{\nabla_x}(x)$ and $h_{\nabla_y}(y)$ } for $\nabla_{x,y}$ and the two 1-D spatial masks { $h_{\nabla_x}^2(x)$ and $h_{\nabla_y^2}(y)$ } for $\nabla_{x,y}^2$. Find the **expressions** for the equivalent 1-D frequency domain filters: $H_{\nabla_x}(u)$, $H_{\nabla_y}(v)$, $H_{\nabla_x^2}(u)$ and $H_{\nabla_y^2}(v)$. ------ (6 Marks)

(ii) Consider the binary image in Fig. 1-a, f(x, y) of size 12×32 consisting of alternating stripes of white (1) and black (0) in both spatial directions, each stripe being 2 pixels wide. Find the frequency domain coordinates $(\boldsymbol{u},\boldsymbol{v}),$ where u = $-6, -5, \dots, -1, 0, 1, \dots, 5$ and $v = -16, -15, \dots, -1, 0, 1, \dots, 14, 15$, of the three most dominant frequency components in the centered-DFT of $f(x, y) \stackrel{\mathcal{F}}{\Leftrightarrow} F(u, v)$. Write the magnitude of the highest frequency component in F(u, v). Find the frequency **domain mask** H(u, v) required to filter out the white stripes in the horizontal direction from f(x, y) to obtain the output image g(x, y) shown in Fig. 1-b. Write the steps involved in filtering. ----

----- (14 Marks)

Note: The black borders are not part of the images. For H(u, v), it is sufficient to write the locations where H(u, v) is zero and non-zero and the magnitudes of the non-zero values.

Consider the 4 × 6, 8-bit image f(x, y) given below. A 512-word dictionary with the starting content shown in Fig. 2-a is assumed. Locations 256 through 511 initially are unused. Compress the image using the LZW coding and complete the table shown in Fig. 2-b. Calculate the compression (C_{LZW}) achieved. ------ (15 Marks)

Compress the encoded output (i.e., the third column in the table in Fig. 2-b) using **quaternary {0, 1, 2, 3} Huffman coding**. Show all the steps involved in the Huffman coding. Compute the compression (*C*_H) achieved. ----- **(5 Marks)**

Currently

Dictionary Location	Entry
0	0
1	1
255	255
256	_
511	_

	f(x,y) =	21 21 21 21 21	21 21 21 21	95 95 95 95	169 169 169 169	243 243 243 243	243 243 243 234
--	----------	----------------------------	----------------------	----------------------	--------------------------	--------------------------	--------------------------

Dictionary

Recognized Sequence	Pixel Being Processed	Encoded Output	Location (Code Word)	Dictionary Entry
		Fig. 2-b		

- **3.** (i) Consider the image *I* with an object *A* and the eight structuring elements B_i for i = 1, 2, ..., 8, their origins are indicated by the underlined pixels. Compute the morphological operations: ------ (5 Marks)
 - a) $A_1 = \{z | (B_1)_z \subseteq A \text{ and } (B_2)_z \subseteq A^c\}$
 - b) $A_2 = (A \ominus B_3) \cap (A^c \ominus B_4)$
 - c) $A_3 = (A \ominus B_5) (A^c \ominus B_6)^c$
 - d) $A_4 = (A \ominus B_7) (A^c \oplus \hat{B}_8)$
 - e) $A_5 = A_1 \cup A_2 \cup A_3 \cup A_4$

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0
0	0	1	1	1	1	0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	0	0	1	1	1	1	1	0	0	0
0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0
0	0	1	1	0	0	0	0	0	1	1	1	1	0	0	0
0	0	1	1	0	0	0	0	0	1	1	1	1	0	0	0
0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0
0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0
0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							I								

×	1	×]	X	0	×	Γ	×	1	X	×	0	Х	×	0	0	X	1	1	Γ	0	0	×	1	1	×
0	1	1	1	1	<u>0</u>	0		1	<u>1</u>	0	0	0	1	1	<u>1</u>	0	0	<u>0</u>	1	Γ	0	<u>1</u>	1	1	<u>0</u>	0
0	0	×]	1	1	X		×	0	0	×	1	1	×	1	×	×	0	×		×	1	×	×	0	×
	B_1				B_2				B_3			B_4			B_5			B_6				B_7			B_8	

(ii) Consider the 4-bit image I(x, y) given below containing a coin and its shadow in a background (without the dark border). Using image segmentation techniques (which includes point, line and edge detection, and thresholding), segment the image into two binary images: I_1 , consisting of only the coin in a background and I_2 , consisting of only the shadow in a background. Show all the steps involved and write the two output images. --

If the image *I* is corrupted by a Gaussian noise with mean 7 and a standard deviation of 4 intensity levels, would your segmentation still work? Explain.

The intensity transformations T_i for i = 1, 2, 3 are used on the input image I to obtain the output images F_i . Would your segmentation still work on the output images F_i i.e., after the transformations? Explain.

4. (i) Find the shape number and order of the shape number for the given boundary (Use 4-directional code) in Fig. 4-a. Each line segment is of equal length. ------ (4 Marks)

(ii) Consider the feature matrix x representing a set of four observations (samples) of three features of an object. Each row in x represents a sample.

- a) Calculate the covariance matrix for x. ------ (4 Marks)
- **b)** Find the transformation from x to y using the Hotelling Transform relation. Write the **transformation** matrix A. ------ (8 Marks)
- c) Calculate the covariance matrix for *y*. ------ (4 Marks)