BITS Pilani, K K Birla Goa Campus
 Digital Image Processing (EEE F435) [IC: Ashish Chittora]
 End-Semester Examination, Semester-II (2022-23)

Date: 08/05/2023
Maximum marks: 80

Duration: 180 Minutes
Time: 2 PM-5 PM

Note: Write the answers clearly with suitable explanation/process. Directly written final answers will not be evaluated.
Q.1. Write a MATLAB program to create a black grid over a grayscale image 'apple.jpg' of size 128 x 128. The gridlines are 4 pixel wide and divides the image into 16 blocks (4 x 4 format) as shown in Fig-
 is ($\mathrm{x} 2-\mathrm{x} 1) /(\mathrm{n}-1)]$
Q.2. Suppose that $f: R^{2} \rightarrow R^{2}$ is an affine transformation such that

$$
\begin{equation*}
\mathrm{f}(1,1)=(3,-4), \mathrm{f}(0,2)=(-1,-1) \text { and } \mathrm{f}(-1,1)=(1,0) \tag{5}
\end{equation*}
$$

(a) Find the matrix \mathbf{A} that represents f in homogeneous coordinates.
(b) Compute $f(6,-8)$.
Q.3. (a) Imagine a 64×64 image with 2 bits/pixel representation. The normalized gray levels are $0,1 / 3$, $2 / 3,1$. Suppose the image distribution is given by Table-Q3a.
(i) Apply histogram equalization and draw the equalized histogram.
(ii) Apply Huffman encoding on the original image to determine variable length codes for each gray level. Calculate the entropy and compression ratio achieved.
(b) Use Run-Length Encoding to encode the MSB plane of following 4-bit image Fig-Q3b:

Fig-Q1

Gray level	No. of pixels
0	1813
$1 / 3$	1506
$2 / 3$	574
1	203

Table-Q3a

1	7	10	10
6	13	15	15
6	13	15	15
1	7	10	10

Fig-Q3b
Q.4. Given a 10×10 size binary image, whose central 4×4 pixels are all 1 and others are 0 . Sketch the gradient of this image using the Sobel operator Hy. Show all the pixel values.

Q.5. (a) For the following sample vectors: $\mathrm{x}_{1}=(4,11)^{\mathrm{T}}, \mathrm{x}_{2}=(8,4)^{\mathrm{T}}, \mathrm{x}_{3}=(13,5)^{\mathrm{T}}$ and $\mathrm{x}_{4}=(7,14)^{\mathrm{T}}$.
(i) Calculate the mean vector $\left(\mathrm{m}_{\mathrm{X}}\right)$ and Covariance matrix $\left(\mathrm{C}_{\mathrm{X}}\right)$.
(ii) Calculate vectors \mathbf{y}, where \mathbf{y} is derived from \mathbf{x} using Hotelling-transform.
(iii) Covariance matrix of \mathbf{y} vectors $\left(\mathrm{C}_{\mathrm{Y}}\right)$.
(b) Calculate the Euler number for the following images:
(i)

(ii)

Q. 6. (b) For the triangle shape boundary as shown in Fig.Q6 and given three boundary points:
(i) Find the Fourier descriptors (FD) with starting point as O .
(ii) State and verify the FD's translation property for the translation with $\Delta_{x y}=1+2 j$.
Q.7. (a) Perform the morphological 'Closing' operation on a binary image (Fig. Q7a) using the given structuring element. [Assume sufficient zero padding at the image border]
(b) Perform Region (or hole) filling operation on a binary image in Fig. Q7b using given structuring element $\mathrm{B}(\operatorname{dot}=1)$. Write the first four intermediate images $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3} \mathrm{X}_{4}\right)$ of the operation. [Take start point (in image X_{0}) of your choice. X_{n} is last step]

Figure-Q6

Figure-Q7a (perform Closing)

Figure-Q7b (Region filling)

