Birla Institute of Technology and Science, Pilani

EEE G594, Advanced VLSI Devices

Mid Semester Examination, I Semester 2017-2018

OPEN BOOK

Time: 90 min.	Max. Marks=70	Date: 09-10-2016

[Given: $\varepsilon_{Si} = 11.9$, $\varepsilon_{ox} = 3.9$, $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m, $n_i(Si) = 1.5 \times 10^{10}$ cm⁻³, $E_g(Si)=1.12$ eV, $q=1.6 \times 10^{-19}$ C, $k=1.38 \times 10^{-23}$ m²kgs⁻²k⁻¹, T=300 K, $\mu_n=450$ cm²/V-s, $\mu_p=250$ cm²/V-s]

- [1] Consider a n-channel n⁺ poly-SiO₂-Si MOSFET with gate oxide thickness (t_{OX})=5 nm, channel length (L) = 0.6 μ m and acceptor impurity (N_A)=2×10¹⁷ cm⁻³. Calculate V_{Dsat} value with and without gradual channel approximation considering flat band voltage (V_{FB}) -1.1 V, V_{GS}=2 V and bulk to source voltage (V_{BS}) zero. Again calculate the V_{Dsat} considering velocity saturation where saturated velocity of electron at room temperature (v_s) is 10⁷ cm/s. [14]
- [2] For a n-channel bulk MOSFET, t_{OX} =5 nm and N_A =2×10¹⁷ cm⁻³. Also consider the threshold voltage (V_{T0}) of the device is 0.4 V, subthreshold slope 100 mV/decade and drain current 0.1 μ A at V_{T0} . What is the subthreshold leakage current at V_{GS} =0 V? Also calculate the required additional back gate bias (substrate to source voltage) to reduce the leakage current by one order of magnitude. [12]
- [3] For a short channel bulk n-MOSFET device $t_{OX}=50$ nm, $N_A=2\times10^{16}$ cm⁻³, L =0.6 µm, source/drain junction depth $(x_j)=1$ µm, source/drain doping $(N_D)=10^{17}$ cm⁻³. Calculate minimum drain to source voltage (V_{DSPT}) when punch-through starts. Also, calculate the amount of DIBL using charge sharing model for $V_D^{low}=0$ V and $V_{Supply}=V_{DSPT}$ (Consider, $V_{FB}=-1.1$ V and $V_{BS}=0$). [20]
- [4] SOI device shown in the Fig. 1 having $N_A=2\times 10^{17}$ cm⁻³ Q_f/q=5×10¹¹ cm⁻².
 - (a) Calculate threshold voltage when (i) $t_{si}=50$ nm and (ii) $t_{si}=100$ nm.
 - (b) Also calculate subthreshold slope (s) for (i) $t_{si}=50 \text{ nm and (ii)} t_{si}=100 \text{ nm}.$
 - (c) Consider, SOI device with t_{Si} =100 nm: At, V_{GS} =1 V and V_{DS} =2 V, impact-ionization starts and silicon body potential increases to 0.5 V. What is the new value of threshold voltage (V_T) and what is the increment of drain current due to new V_T. (Consider, body factor n=1 and λ =0). [24]

Fig. 1

-----END-----