Birla Institute of Technology and Science, Pilani

First Semester 2017-18 End-Semester Examination (Closed Book)
Course Title: Nanoelectronics \& Nanophotonics Course No. EEE G595
Maximum Marks: 80 Maximum Time: 120 Minutes Dated: 06/12/2017

1. Show that

$$
\begin{equation*}
\int_{0}^{\infty}\left[\left(N_{k}+1\right) e^{i\left(E_{q}-E_{k}-\hbar \omega\right)\left(t^{\prime}-t\right) / \hbar}+N_{k} e^{i\left(E_{q}-E_{k}+\hbar \omega\right)\left(t^{\prime}-t\right) / \hbar}\right] d t^{\prime}=\hbar \pi\left[\left(N_{k}+1\right) \delta\left(E_{q}-E_{k}-\hbar \omega\right)+N_{k} \delta\left(E_{q}-E_{k}+\hbar \omega\right)\right] \tag{10}
\end{equation*}
$$

2. From the expression of the Hamiltonian in the presence of Electromagnetic Field,

$$
H=\frac{1}{2 m_{0}}\left(\vec{p}-\frac{e \vec{A}}{c}\right)^{2}-e \varphi+V_{0}(\vec{r})
$$

obtain the Hamiltonian for the for the composite system(electron+photon) using radiation gauge.
3. From the expression of the photon emission probability,

$$
P_{q \leftarrow k}^{e m}=\frac{\left.e^{2} \hbar^{2}\left(N_{S}+1\right)\langle q| \hat{e}_{S} \bullet \nabla|k\rangle\right|^{2}}{2 m_{0}^{2} \partial \omega_{S} \Omega}\left[\frac{\Gamma_{K}}{\left[\left(E_{q}-E_{k}-\hbar \omega\right)^{2}+\Gamma_{K}^{2}\right]}\right.
$$

separate out the expressions for spontaneous and simulated probabilities.
4. (a) Applying Unitary operation $U=e^{i H_{0} t / \hbar}$ on $|\psi(t)\rangle$ i.e, $e^{i H_{0} t / \hbar}|\psi(t)\rangle \rightarrow|\hat{\psi}(t)\rangle$ transform the Schrodinger equation $i \hbar \frac{\partial|\psi(t)\rangle}{\partial t}=\left(H_{0}+V^{\prime}\right)|\psi(t)\rangle$ into interaction picture.
(b) Now, from the time-development operator $\hat{T}(t)=1-\frac{i}{\hbar} \int_{0}^{t} \hat{V}^{\prime}\left(t^{\prime}\right) \hat{T}\left(t^{\prime}\right) d t^{\prime}$, obtain the most generic expression of the transition probability amplitude for $|k\rangle \rightarrow|q\rangle$. Also, show that the Schrodinger equation of the interaction picture satisfies the integral equation for $\hat{T}(t)$.
(c) Applying First-Order Perturbation theory and assuming V^{\prime} to be time-independent, show that the there is an exponential decay of the electron occupation probability in the initial state $|k\rangle$.
[10]
5. (a) Considering electrons as particles, show that the total resistance of a two terminal device can be given as a sum of interface resistance and device resistance.
(b) The change in the shape of the output characteristics of a nano-scale MOSFET when the dielectric constant ε_{r} of the oxide layer which is varied from 2 to 120 is shown in the figure below. Explain why the saturation current is maximum when ε_{r} is 2 .

Birla Institute of Technology and Science, Pilani

First Semester 2017-18 End-Semester Examination (Open Book)

Course Title: Nanoelectronics \& Nanophotonics Course No. EEE G595 Maximum Marks: 40 Maximum Time: 60 Minutes

Dated: 06/12/2016

1. The discretization of a Zigzag Graphene Nanoribbon is shown in the figure.

Construct $[H],\left[\alpha_{i}\right]$ and $\left[\beta_{i}\right]$ matrices for this system.
2. The figure show a schematic of a Single-Moded Nano-scale Device with Scatterers at 1, 2, 3 and 4 and its Transmission, $T(E)$ for the device which is obtained from the NEGF procedure.

(a) Write a complete NEGF procedure for obtaining the transmission $T(E)$.
(b) Also, explain the dips and peaks in the transmission function.

