Birla Institute of Technology and Science, Pilani

First Semester 2017-18 Mid-Semester Examination (Part A Closed Book)

Course Title: Nanoelectronics \& Nanophotonics Course No. EEE G595

Maximum Marks: $60 \quad$ Maximum Time: 60 Minutes Dated: 9/10/2017
1.(a) From the expression for $h_{0}(\vec{k})=-t\left(1+2 e^{i k_{x} a} \cos k_{y} b\right)$ for a graphite sheet, use Taylor expansion about a Dirac point $\left(k_{x} a, k_{y} b\right)=(0, \pm 2 \pi / 3)$ to obtain the energy dispersion relation for a CNT. Show that within this approximation, we obtain constant-energy contours of circles isotropically disposed around the center of Dirac point.
(b) From the expression of the energy dispersion relation obtained in (a), calculate the minimum energy gap of a ZNT for sub-bands $v_{1}=60$ and $v_{2}=85$ whose circumferential vector is $\vec{c}=\hat{y} 2 b m$ where the value of m is 90 .
2. From the 3-D Schrodinger equation $\left[E_{C}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial y^{2}}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial z^{2}}+U(z)\right] \Phi_{\alpha}(\vec{r})=E_{\alpha} \Phi_{\alpha}(\vec{r})$, obtain a 1-D Schrodinger equation for a z-strip, where electrons are free to move in \hat{x} and \hat{y} direction and there is a confinement along the \hat{z} direction.
3. The Retarded Green's Function for the channel of a one-level device can be given as $G^{R}(E)=\left[E-\varepsilon^{\prime}+i \gamma / 2\right]^{-1}$. Now, from the expression of $G^{R}(E)$, obtain the expression for the density of states, $D(E)$ in the channel and show that the broadened level in the channel of this one-level device can accommodate exactly the same number of electrons that a discrete level could accommodate before it got coupled to the reservoir.
4. Calculate the Integral transforms:
(a)

$$
\begin{equation*}
I(t)=\int_{-\infty}^{\infty} \frac{d E}{2 \pi \hbar} e^{-i E t / \hbar}\left(\frac{1}{E-\varepsilon_{i}+i 0^{+}}\right) \tag{5}
\end{equation*}
$$

(b)

$$
\begin{equation*}
I(E)=\int_{-\infty}^{\infty} I(t) e^{+i E t / \hbar} d t \tag{5}
\end{equation*}
$$

Birla Institute of Technology and Science, Pilani

First Semester 2017-18 Mid-Semester Examination (Part A Open Book)

Course Title: Nanoelectronics \& Nanophotonics Course No. EEE G595

Maximum Marks: $30 \quad$ Maximum Time: 30 Minutes Dated: 9/10/2017

1. Obtain a 8×8 Tridiagonal Hamiltonian matrix for the following z-strip of AlGaAs/GaAs/AlGaAs by using one-band effective mass equation:

2. Obtain a Block-Tri-Diagonal Hamiltonian matrix for the channel a nano-scale 2D device which is rectangular lattice is shown is the figure.

