EEE G612 Coding Theory and Practice
 First Semester 2023-24
 Mid Semester Exam

Date : 09/10/2023
Max. Marks: 60
Name: \qquad ID No. \qquad Time: 90 min

Instructions:

1) This is a closed book exam. Only 1 A 4 size handwritten cheat sheet is allowed.
2) Show all the steps clearly. If I cannot interpret it, I cannot grade it.
3) Sharing of calculators or any other stationary is not permitted during the exam.
Q.1) Consider the Lempel Ziv encoding for quaternary data (symbols: $0,1,2,3$). Encode the following data: 13300202111300002212223 . What is the compression ratio obtained? Does this scheme actually cause any compression? Justify.
Q.2) Consider a MIMO channel wherein the singular value matrix obtained from the SVD of \mathbf{H} matrix is given as,

$$
\sum=\begin{array}{ccc}
0.9719 & 0 & 0 \\
0 & 0.2619 & 0 \\
0 & 0 & 0.0825
\end{array}
$$

Assume that \mathbf{H} is known both to the transmitter and receiver. The system has $\frac{P}{\sigma^{2}}=20 \mathrm{~dB}$, and a bandwidth of $B=100 \mathrm{kHz}$. Find the optimal power allocation $\left(\frac{P_{i}}{P}\right)$ and the total capacity.
[10]
Q.3) Consider a Markov chain whose probability transition matrix is given as,

$$
\boldsymbol{P}=\begin{array}{ccc}
0 & 1 & 0 \\
\alpha & 0 & 1-\alpha \\
1 & 0 & 0
\end{array}
$$

(i) Draw the state transition diagram
(ii) Find the stationary distribution
(iii) For what value of α will the entropy rate be maximum? Also what is the maximum entropy rate of this Markov chain?
$[2+5+5=12]$
Q.4) In a repetitive BSC, input symbols are $x_{1}=00, x_{2}=11$, and the output symbols are $y_{1}=$ $00, y_{2}=01, y_{3}=10$ and $y_{4}=11$. Symbols x_{1} and x_{2} are equiprobable. The transition probabilities for received bit b_{j} when the transmitted bit is b_{i} are $P\left(b_{j}=1 \mid b_{i}=0\right)=P\left(b_{j}=0 \mid b_{i}=1\right)=p$ and $P\left(b_{j}=1 \mid b_{i}=1\right)=P\left(b_{j}=0 \mid b_{i}=0\right)=1-p=q$.
(i) Create the channel graph and write the channel matrix
(ii) Find $H(y), H(y \mid x)$, and hence I ($x ; y$)
$[4+4+4=12]$
Q.5) Let C be the linear code in $G F(2)$, having block length 5 , in which the fourth bit of the codewords (from left) checks the parity of the first two bits, and the last bit (from left) is the overall parity check, i.e., if $c_{i}=\left\{x_{1} x_{2} x_{3} x_{4} x_{5}\right\}$ is a codeword, then $x_{4}=x_{1}+x_{2}$, and $x_{5}=x_{1}+x_{2}+x_{3}+x_{4}$.
(i) Construct the standard array for this code
(ii) Determine if any error has occurred during the transmission if the received code word is 00100 . If yes, then decode the received code word using standard array decoding.
(iii) How can the decoded code word be retrieved from the received code word? $[\mathbf{1 0 + 3 + 2}=\mathbf{1 5}]$

