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COMPREHENSIVE EXAMINATION
Instructor-in-charge: B. Sainath, 2210−A, Electrical and Electronics Eng. Dept., BITS Pilani.

Course No./Title : EEE G613/Advanced Digital Signal Processing
DATE: Dec. 17th, 2022. Test duration: 180 Mins. Max. marks: 40.

(Note: You may use standard results or formulae by stating them explicitly. Highlight final answers in boxes. Simplify your response
to the extent possible. Use notation consistently. Provide key intermediate steps.)

Q.1. Consider the following filters:

H0(z) = 1 + z−1, H1(z) = 1− z−1, F0(z) = 1 + z−1, F1(z) = −1 + z−1,

where H0(z) and H1(z) are the analysis filters, F0(z) and F1(z) are the synthesis filters.
Can we construct two-channel QMF bank using the above set of filters? Yes/No? Justify your response. [1 point]
ii). Suppose the synthesis filters are selected such that F0(z) = H0(z) and F1(z) = −H1(z). Comment on the nature of the matrix.

Determine the Alias component matrix and its determinant. [3 points]
iii). Neatly sketch the QMF bank with analysis and synthesis filters. Provide all labels/notation in the block diagram. [2 points]
iv). Express the output X̂(z) as a product of three matrices in which the middle matrix is the Alias component matrix. [1 point]

Q.2. Let σ2
0 , σ2

1 , . . . , σ2
N−1 denote the subband variances. Recall that variance signifies the power of a signal. Consider the coding

gain in an ideal subband coding system with N subband channels (ideal filters). The subband coding gain (say Gc) is defined as

Gc =
1
N

∑N−1
m=0 σ

2
m(

ΠN−1
m=0σ

2
m

) 1
N

.

Consider the following power spectrum of the input signal:∣∣X(ejω)
∣∣2 = 1− ω

π
, |ω| ≤ π.

i). Let N = 2. Determine subband variances (σ2
0 , σ2

1) and their geometric mean (GM). Compute the subband gain in dB. Note:
During the computation of variances, you need to account for positive and negative frequencies. [3 points]

ii). Consider the general scenario of N subband channels. Obtain the general expression for subband variance (say σ2
k) and subband

coding gain (as a function of N ). Note: Final answer should be in the most simplified form and does not contain summation (’
∑

’).
[4 points]

Q.3. i). Consider the discrete-time (DT) matched filter detector. Consider the following statement: ”The signal output of the matched
filter is maximized by sampling the output at n = (N − 1).” Prove this statement analytically. The following equation is useful:

y[n] =

∫ 0.5

−0.5

S∗(f)X(f) exp{j2πf (n− (N − 1))} df.

ii). Consider the following signal detection:

s[n] = Am cos(2πf0n), 0 < f0 < 0.5, n = 0, 1, . . . , (N − 1).

a). Determine the signal output of a discrete-time matched filter at time n = (N − 1). Simplify to the extent possible. Hint: Try
approximation (sum → integral) for large N . Note: Your final answer should not contain summation (’

∑
’).

b). Assume that the signal is delayed by n0 > 0 samples so that we receive s[n − n0]. Applying the same matched filter (in part
(a)), determine the signal output as a function of N , Am, f0, n0 at n = (N − 1). Comment on the final result (i.e., What is the impact
of n0?) Note: Your final answer should not contain summation (’

∑
’). [2 + 2 + 3 points]
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Q.4. Consider the following real-valued measurements described by

Y1 = β +W1, Y2 = β +W2,

where β is a non-random parameter, W1, W2, are random, statistically independent unbiased measurement errors having mean zero.
The objective is to design a data processing algorithm that combines the two measurements Y1 and Y2 to produce mean square error
(MSE)-optimal estimate of β. The errors W1, W2 have variances σ2

1 and σ2
2 , respectively.

Define β̂ = k1Y1 + k2Y2. Determine the optimal estimate β̂∗ in terms of the error variances and measurements.
Note: Let βe = β̂ − β. E [βe] = 0. Find k1 and k2 (in terms of noise variances) that minimize E

[
|βe|2

]
.

Determine the minimum mean square estimation error (MMSE). [4 + 1.5 points]
ii). Refer to Fig. 1. Identify and name the signal processing tasks. Note that (a), (b), and (c) illustrate three types of estimation

problems; we desire an estimate at time t.

Fig. 1. Pertaining to Q.4.(ii).

Q.5. i). Consider the following adaptive filter model:
Let x[n] denote the input vector. Let h[n] characterize the unknown system (e.g., channel) and ĥ[n] its estimate.
Let y[n] = h†[n]x[n] and d[n] = y[n] + I[n], where I[n] denotes the interference ̸= 0. Further, consider the following definitions:

e[n] = d[n]− ŷ[n], δ[n] = ĥ[n]− h[n], r[n] = ŷ[n]− y[n], ∆e[n] =
∣∣∣ĥ[n]− h[n]

∣∣∣2.
Consider the following update:

ĥ[n+ 1] = ĥ[n] +
µ e[n]x[n]

x†[n]x[n]
,

where µ denotes learning rate.
Derive an expression for optimal learning rate µ∗ in terms of σ2

r , σ2
e . Note: E

[
|r[n]|2

]
≜ σ2

r and E
[
|e[n]|2

]
≜ σ2

e . Hint: Optimal
learning rate minimizes E [∆e[n+ 1]]. [4 points]

ii). Consider the following model: r[n] ∼ CN (0, 1). Further, e[n] = 9 sin(nω0+Ψ) is a widesense stationary random process, where
Ψ ∼ U [−π π]. Using the formula obtained in (i), compute µ∗. [3 points]

Q.6. Valid or Invalid (5 points) Note: Write down Valid/Invalid. Justify your response.

1) Consider the mathematical formulation of compressed sensing (CS): Let s denote a column vector of weighting coefficients.
Let y denote the vector of measurements. Further, let Φ be a stable measurement matrix, and Ψ is the basis matrix comprising
orthonormal basis vectors. The following problem is concave in s:

min
s

||Θs− y||2 + λ||s||,

where Θ = Φs, λ is some real positive constant that weighs importance of sparsity.
2) Recall the optimal filter (Wiener) weights w∗ given by w∗ = R−1

x rdx, where Rx is the autocorrelation of x[n] and rdx is
the crosscorrelation between d[n] and x[n]. Consider the quadratic cost Cq(w) = σ2

d − 2wtrdx + wtRxw. For σ2
d = 0.54,

rdx = [ 1√
8

− 1√
8
]t and w∗ = [ 1√

2
− 1√

2
]t, we have Cq(w

∗) = 0.04.
3) Consider a finite energy pulse s(t). Its magnitude spectrum is given by |S(f)| = 1

2
√
π
exp

(
−4π2f2

)
. The mean square bandwidth

= 0.25. Note:
∫∞
−∞ e−πf2

df = 1.
4) Consider a channel impulse response at tn denoted by h(tn) = hcn + jhsn, is a zero mean, complex Gaussian random process

with variance σ2(tn). The real and imaginary components hcn and hsn are uncorrelated Gaussian random processes each with
variance σ2(tn).

5) Let B be a stable measurement matrix. The standard CS problem is to reconstruct a s−sparse vector x ∈ RN from the measurements
y = Bx ∈ RM , where M > N .

□ END OF QUESTION PAPER □


