MID-SEMESTER TEST

Instructor-in-Charge: B. Sainath, 2210A, EEE Dept., BITS Pilani.

Course: Advanced Digital Communication (EEE G622)
DATE: Mar. $9^{\text {th }} 2017$ MAX. TIME: 90 Mins. Max. Marks: 30
(Note: You may use standard results or formulae. However, state them clearly and precisely.)
Q. 1. a). [On Circularly Symmetric Complex Gaussian (CSCG) Random Variable]
a). Notation: $\mathcal{C N}$ denotes CSCG random variable. $Z \sim \mathcal{C N}(0,1)$. Derive the moment generating function (MGF) of $|Z|^{2}$. From the MGF, determine the mean and variance of $|Z|^{2}$. ($2+1+1$ points)
b). Suppose $Z_{1} \sim \mathcal{C N}(0,1)$ and $Z_{2} \sim \mathcal{C N}(0,1)$ are i.i.d. random variables, determine the probability density function (PDF) of $\left|Z_{1}\right|^{2}+\left|Z_{2}\right|^{2}$. Sketch the PDF. (3+1 points)
c). (Filtered white noise) Let $W(t)$ be a additive white Gaussian noise process of spectral density σ^{2}. Let $U=\int_{0}^{1} W(t) d t$. Find the probability density function of U. (2 points)
Q. 2. [On Square of Gaussian Q-function]

Recall the proof for $Q(x)$ derived in class. Using similar trick, derive single-integral expression for $Q^{2}(x)$ in which θ is the variable of integration. [5 points]

Derive an upper bound on $Q^{2}(x)$. [2 points]
Q. 3. [Matched Filter] A binary baseband communication system transmits one bit for every T_{b} seconds with $T_{b}=4$. The pulse shape used is shown in figure 1 .
a). The pulse $s(t)$ is applied as input to the matched filter. Sketch the impulse response $h(t)$ of the matched filter. [2.5 points]
b). Determine the sampled output of the matched filter at $\mathrm{t}=4$. [2.5 points]

Fig. 1: Pulse shape in Q.3.

Consider the data transmission over baseband channel using polar signaling in which bit ' 0 ' is mapped to -1 volt and bit ' 1 ' is mapped to +1 volt. The line encoded signal is transmitted over baseband channel. The received signal is corrupted by Gaussian noise process with variance σ^{2}.
c). If the matched filter is used at the receiver, determine the SNR of the sampled output. [2.5 points]
d). Determine the probability of a bit error $p_{\text {be }}$ of the matched filter receiver. Express $p_{\text {be }}$ in terms of erfc. [2.5 points]
Q. 4. [4-PAM] Consider 4-PAM constellation shown in Figure 2. Consider transmission of symbols through AWGN with two-sided power spectral density $\frac{N_{0}}{2}$. Assume that all symbols are equally likely.

Fig. 2: 4-PAM constellation diagram
a). Compute the value of b if the average transmitted energy per symbol is 1 . [1 point]
b). Derive average probability of error $\left(P_{e}\right)$ in terms of erfc function. [2 points]

