Birla Institute of Technology & Science, Pilani, Rajasthan First Semester 2022-2023 Mid-Semester Exam (Close Book)

EEE G622 Advanced Digital Communications

Date: 13-03-2023, Duration: 90 Minutes, Maximum Marks: 25

- 1. Answer the following [5 Marks]:
 - (a) Illustrate fundamental limits of digital communications for an AWGN band-limited channel considering a channel bandwidth of 200KHz and SNR of 20dB.
 - (b) How the continuous phase is maintained in the CPM digital modulation scheme? Illustrate for a modulation scheme using a phase trajectory diagram.
 - (c) A random process is given as $X(t) = A\cos(2\pi f_c t + \phi)$ where $A \sim N(\mu, \sigma^2)$ is Gaussian distributed. Here, ϕ and f_c are constant. Determine E[X(t)] and ACF $R_x(t_1, t_2)$.
- 2. A 16-QAM constellation is shown in the figure. Take additive noise as AWGN with $N \sim (0, 1)$ and assume equiprobable symbol transmission. [5 Marks]

- (a) Find average symbol energy.
- (b) Draw the decision boundary.
- (c) Find the probability of error only for the symbol "-5" located at the y-axis.
- (d) Find the probability of correctness only for the symbol "1" located at the x-axis.
- (e) Draw another 16-QAM constellation maintain the same minimum distance between adjacent symbols to minimize the average symbol energy.
- 3. A 4-ary constellation is shown in the figure. Assume that the additive noise is distributed as $f_n(n) = \frac{1}{2}e^{-|n|}$ for both in-phase and quadrature-phase. Take the distance between adjacent symbols as 2d and equiprobable transmission. [5 Marks]

- (a) Find the SER.
- (b) Find SER if the in-phase noise component (i.e., noise n_I) is zero.
- 4. The four signals $s_1(t)$, $s_2(t)$, $s_3(t)$, and $s_4(t)$ are shown in the figure. [5 Marks]

- (a) Draw minimum number of basis signals to represent the four signals.
- (b) Sketch the vector representation (i.e., constellation diagram) of each signal.
- (c) Draw the matched filter corresponding to one of the basis signals.
- 5. Draw a general transceiver block diagram for an M-ary PSK modulation using signal-space representation applying MAP receiver. Specify the dimension of the signals at the input and output of the system blocks. [5 Marks].