Birla Institute of Technology and Science, Pilani

Applied Estimation Theory (EEE G641)

Mid-Semester Examination, First Semester 2022-23
Time: 90 minutes
Maximum Marks: 35

1. Prove the following, given that Λ denotes the LRT, H_{0} and H_{1} denote the hypothesis, $\mathbb{E}(\cdot)$ denotes the expectation operator, and Var is the variance.
(a) $\mathbb{E}\left[\Lambda^{n} \mid H_{1}\right]=\mathbb{E}\left[\Lambda^{n+1} \mid H_{0}\right]$
(b) $\mathbb{E}\left[\Lambda \mid H_{0}\right]=1$
(c) $\mathbb{E}\left[\Lambda \mid H_{1}\right]-\mathbb{E}\left[\Lambda \mid H_{0}\right]=\operatorname{Var}\left[\Lambda \mid H_{0}\right]$
2. We want to estimate a in Binomial distribution by using n observations.

$$
\operatorname{Pr}(r \text { events } \mid a)=\binom{n}{r} a^{r}(1-a)^{n-r}, r=0,1,2, . ., n .
$$

(a) Find the ML estimate of a, check if the estimator is unbiased, and compute its variance.
(b) Is it efficient?

Hint: For a Binomial random variable with parameters (n, p) the mean is $n p$ and the variance is $n p(1-p)$.
3. We observe x with a Rayleigh PDF given by

$$
f_{X}(x)=\frac{x}{\sigma^{2}} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right), x \geq 0
$$

with $H_{0}: \sigma^{2}=1$ and $H_{1}: \sigma^{2}=3$. We wish to detect the event, increase in the noise level.
(a) What is the ML detector for this problem?
(b) What is the Neyman-Pearson test that achieves the $P_{F}=0.1$, and what is the P_{D}.
4. A ternary communication system transmits one of the three amplitude signals $[1,2,3]$ with equal probabilities. The independent received signals under each hypothesis are

$$
\begin{aligned}
& H_{1}: Y_{k}=1+N, k=1,2, \ldots, K, \\
& H_{2}: Y_{k}=2+N, k=1,2, \ldots, K, \\
& H_{3}: Y_{k}=3+N, k=1,2, \ldots, K,
\end{aligned}
$$

where N is the AWGN with mean zero and variance σ^{2}. The costs are $C_{i i}=0$ and $C_{i j}=1$ for $i \neq j ; i, j=1,2,3$. Determine and plot the decision regions.
5. Find the minimum mean-square error and the MAP estimators of X from the observation $Y=X+N$, where X and N are random variables with the density functions $f_{X}(x)=\frac{1}{2} \delta(x)+\frac{1}{2} \delta(x-1)$ and $f_{N}(n)=\frac{1}{2} \exp (-|n|)$, respectively.

End of Paper

