Birla Institute of Technology \& Science, Pilani
 Pilani Campus - Rajasthan

Mid-Semester Exam - FIN F414
Financial Risk Analytics \& Management
Session-2022-23 (I)
Closed Book

Dated: 01/Nov./2022
Maximum Marks: 70
Time Duration: 90 Minutes (Max)

Instructions:

- Do not forget to write your Name and ID number on the answer sheet
- You need to write the answers in the separate answer booklet provided to you and submit to the invigilator before leaving the examination room. Failing to do so will result in zero marks in this evaluative component
- To get the full score, you need to show all the steps required to arrive at the final answer with proper interpretation
- Calculator is allowed

Question 1:

[10 + $\mathbf{1 0}$ =20 Marks]
(A) An investor created a strategy where she buys the asset, buys an out-of-the-money put option on the asset, and sells an out-of-the-money call option on the asset. The two options should have the same time to expiration. Suppose Marie wishes to apply this strategy in Hollywood, Inc., a non-dividend-paying common stock, with six months until expiration. She would like the put to have a strike price of $\$ 45$ and the call to have a strike price of $\$ 75$. The current price of Hollywood's stock is $\$ 60$ per share. Marie can borrow and lend at the continuously compounded risk-free rate of 7 percent per annum, and the annual standard deviation of the stock's return is 50 percent. Use the Black-Scholes model to calculate the total cost of the collar that Marie is interested in buying. What is the effect of the strategy? Under what circumstances would you have earned better profit? Explain with proper reasoning.
(B) Suppose that observations on a stock price (in rupees) at the end of each of 15 consecutive weeks are as follows:
$30.2,32.0,31.1,30.1,30.2,30.3,30.6,33.0,32.9,33.0,33.5,33.5,33.7,33.5,33.2$
Estimate the stock price volatility per annum. What is the standard error of your estimate? Interpret the results with proper justification.

Question 2:

[20 Marks]
A financial institution has just sold 1,000 seven-month European call options on the Japanese yen. Suppose that the spot exchange rate is 0.80 cent per yen, the exercise price is 0.81 cent per yen, the risk-free interest rate in the United States is 8% per annum, the risk-free interest rate in Japan is 5% per annum, and the volatility of the yen is 15% per annum. Calculate the delta, gamma, vega, theta, and rho of the financial institution's position. Interpret each number.

Birla Institute of Technology \& Science, Pilani Pilani Campus - Rajasthan

Question 3:
[30 Marks]
Suppose that the result of a major lawsuit affecting a company is due to be announced tomorrow. The company's stock price is currently $\$ 60$. If the ruling is favorable to the company, the stock price is expected to jump to $\$ 75$. If it is unfavorable, the stock is expected to jump to $\$ 50$. What is the risk-neutral probability of a favorable ruling? Assume that the volatility of the company's stock will be 25% for six months after the ruling if the ruling is favorable and 40% if it is unfavorable. Calculate the relationship between implied volatility and strike price for six-month European options on the company today. The company does not pay dividends. Assume that the six-month risk-free rate is 6%. Consider call options with strike prices of $\$ 30, \$ 50,60, \$ 70$, and $\$ 80$. Interpret the results with appropriate justifications. How do you create a volatility surface using the given information?

x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9986	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Greek letter	Call option	Put option
Delta	$e^{-q T} N\left(d_{1}\right)$	$e^{-q T}\left[N\left(d_{1}\right)-1\right]$
Gamma	$\frac{N^{\prime}\left(d_{1}\right) e^{-q T}}{S_{0} \sigma \sqrt{T}}$	$\frac{N^{\prime}\left(d_{1}\right) e^{-q T}}{S_{0} \sigma \sqrt{T}}$
Theta	$-S_{0} N^{\prime}\left(d_{1}\right) \sigma e^{-q T} /(2 \sqrt{T})$	$-S_{0} N^{\prime}\left(d_{1}\right) \sigma e^{-q T} /(2 \sqrt{T})$
	$+q S_{0} N\left(d_{1}\right) e^{-q T}-r K e^{-r T} N\left(d_{2}\right)$	$-q S_{0} N\left(-d_{1}\right) e^{-q T}+r K e^{-r T} N\left(-d_{2}\right)$
Vega	$S_{0} \sqrt{T} N^{\prime}\left(d_{1}\right) e^{-q T}$	$S_{0} \sqrt{T} N^{\prime}\left(d_{1}\right) e^{-q T}$
Rho	$K T e^{-r T} N\left(d_{2}\right)$	$-K T e^{-r T} N\left(-d_{2}\right)$

