BITS-PILANI, K. K. BIRLA GOA CAMPUS

Semester I, 2022-23
INSTR F311 - ELECTRONIC INSTRUMENTS AND INSTRUMENTATION
TECHNOLOGY

Part A ($\mathbf{3 0}$ Marks, First 60 minutes)

- This section carries 10 questions. The first 5 questions carry 2 marks each and the next 5 questions carry 3 marks each.
- Write the answers to the questions in Part-A on a separate, printed answersheet provided. Write only the final answers.
- Rough-work for Part A can be done only on the last three pages of the Main Answersheet.
- Use the Main Answersheet to write the answers to the questions in Part B.
- Prepare an index behind the cover page of the Main Answersheet.

First $\mathbf{5}$ questions: ($\mathbf{5}$ questions $\times \mathbf{2}$ marks $=\mathbf{1 0}$ marks)

Q.1 An unknown resistance of value 40Ω is measured by passing a constant current of 2 mA and measuring the resultant DC voltage across the resistance. The resistance of the lead wires is 2Ω. What is the difference $V_{\text {diff }}$ (in mV) between the voltmeter readings when connected in Two-wire sensing and Four-wire sensing measurement setups?
Q. 2 A 0-10 V Digital voltmeter with a $4 \frac{1}{2}$ digit display is used for measuring DC currents in the range $0-1 \mathrm{~mA}$ using an electronic circuit as shown in Fig. Q2. What is the Transimpedance gain R_{f} (in $\mathrm{k} \Omega$) of the amplifier A_{1} ? Assume $\mathrm{R}_{1}=\mathrm{R}_{2}=1 \mathrm{k} \Omega$

Fig. Q2: Current measurement circuit
Q. 3 In a Hall effect device, the current passing through the device is 3 A and a magnetic field of 0.4 T is applied perpendicular to the device. If the Hall-effect coefficient is $600 \mu \Omega / T$, calculate the generated Hall voltage e_{H} (in mV).
Q. 4 Calculate the time base error $\Delta f_{t b}$ (in Hz) in an electronic counter for the measurement of frequency of a 12 MHz signal, if the crystal oscillator's frequency is 100 MHz and its accuracy is specified to be 20 ppb .
Q. 5 The chart speed of a recording instrument is $2 \mathrm{~cm} / \mathrm{s}$. What is the distance $d_{\text {cycle }}$ (in mm) to which one cycle of a 5 Hz signal would extend on the chart?

Next 5 questions: (5 questions $\times 3$ marks = 15 marks)

Q.6 An amplifier is fed an input signal with frequency components $f_{1}=31.8 \mathrm{kHz}$ and $f_{2}=32.2 \mathrm{kHz}$ and analyzed for the Intermodulation components $\left(m f_{1} \pm n f_{2}\right)$ in the output. Write the values of the third order Intermodulation components $f_{I M, 3,1}$ and $f_{I M, 3,2}(\mathrm{in} \mathrm{kHz})$ whose frequencies are close to those present in the input signal.
Q. 7 A high impedance probe with a $10 \mathrm{M} \Omega$ resistance and 5 pF capacitance is connected to an oscilloscope with an input resistance of $1 \mathrm{M} \Omega$. When the probe is connected, the effective capacitance decreased to 4.5 pF . What is the input capacitance $C_{\text {in }}(\mathrm{in} \mathrm{pF})$ of the oscilloscope?
Q. 8 The reference frequency $\mathrm{f}_{\text {ref }}$ applied to an 8-bit Direct Digital Synthesis (DDS) chip is 10 MHz . What are (i) the Frequency resolution $f_{\text {res }}(\mathrm{in} \mathrm{Hz})$ and (ii) the Phase resolution $\phi_{r e s}$ (in rad)?
Q. 9 In a laboratory, the mass of an object is measured using a beam balance whose tolerance is $\pm 0.1 \mathrm{~g}$, which in turn is calibrated using a physical balance of tolerance $\pm 0.02 \mathrm{~g}$, all specified with a 2 sigma confidence interval. (i) What is the Test Accuracy Ratio (TAR) in the measurements? (ii) What is the probability (in \%) that the reading will lie within the specified tolerance limits.
Q. 10 Calculate the output noise voltage V_{0} due to shield voltage V_{s} as shown in Fig. Q 10 , if shield voltage is 1 V at 1.5 MHz , cable shield to conductor capacitance is 200 pF , the signal source impedance is 1000Ω and the load resistance is $10 \mathrm{k} \Omega$.

Fig. Q10. Shield at potential V_{s}

Instructions:

- Write all the steps clearly and give explanations for complete credit.
- Overwritten answers and answers written with a pencil will not be rechecked.
- Make suitable assumptions wherever necessary and mention them clearly.

Question 1:

(a) Ayrton Shunt arrangement, (Fig. B.1.1) is designed to achieve DC current measurement ranges of $0-10 \mathrm{~mA}, 0-100 \mathrm{~mA}$ and $0-1$ A with a PMMC mechanism that has an internal resistance of 50Ω with a full scale deflection current of 1 mA . Find resistances $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3}.

Fig. B1.1 Ayrton Shunt
(b) A Wheatstone's bridge is powered by a DC current source I_{S} (Fig. B1.2). The arm resistances $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ and R_{4} are equal and at the balanced condition equal to R_{0}. During an experiment, their values were found to undergo a fractional change given by $-\alpha,+2 \alpha,+\alpha$ and -2α respectively, where $\alpha \ll 1$. The Galvanometer, whose resistance is R_{G}, carries a current I_{G} due to bridge imbalance.
\rightarrow Obtain expressions for Thevenin voltage V_{TH} across c, d and I_{G}. as function of $\alpha, I_{S}, \mathrm{R}_{0}, \mathrm{R}_{\mathrm{G}}$.
\rightarrow If $\mathrm{R}_{0}=1 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{G}}=50 \Omega, I_{S}=2 \mathrm{~mA}$, calculate V_{TH} and I_{G} for $\alpha=0.5 \%$.

Fig. B1.2 Wheatstone's Bridge
(c) Design a decade-programmable Fast Switching Direct Analog Synthesizer to generate 15.7 MHz from a reference of 10 MHz . The Synthesizer consists of identical modules, one to program each significant digit in the output frequency. Each module contains a mixer, an oscillator that produces one of 10 possible frequencies, band-pass filter and a $\div 10$ divider.

Question 2:

An LCR bridge uses a sinusoidal current source I_{s} of 1 mA peak current at 1 kHz to power a standard resistor $R_{s t d}$ and an unknown component Z_{x} both connected in series. The instantaneous differential voltages across $R_{s t d}$ and Z_{x} given by $e_{s t d}$ and e_{x} are fed to Channel- 1 and Channel-2 respectively of a dual trace oscilloscope. Their time trace is shown in Fig. B.2. The grid spacing along the Time and Voltage axes are $125 \mu \mathrm{~s}$ and 250 mV respectively.
(a) If the unknown component Z_{x} is modelled as a series combination of a resistor R_{x} and a capacitor, C_{x}, find the component values $R_{s t d}, R_{x}$ and C_{x}.
[4 M]
(b) Sketch the X-Y plot (Lissajous figure) wherein Channel-1 and Channel-2 are configured as X- and Y- channels respectively.
[3 M]
(c) The impedance Z_{x} is now modelled at the same excitation frequency as an equivalent parallel combination of a resistor R_{P} and a capacitor C_{P}. Obtain the expressions for R_{P} and C_{P} as a function of R_{x}, C_{x} and a dimensionless parameter $\alpha=R_{x} C_{x} \omega$. Calculate α, R_{P} and C_{P}.
[5 M]

Fig. B. 2 Time trace of signals $e_{\text {std }}$ and e_{x}

Question 3:

(a) In a counter, the input channel noise is $200 \mu \mathrm{~V}$, and the input signal has 1 mV rms noise through the specified bandwidth. Slew rates corresponding to the rising and falling edges are $300 \mathrm{mV} / \mu \mathrm{s}$ and $400 \mathrm{mV} / \mu \mathrm{s}$ respectively. The ± 1 count error and the least significant digit (LSD) in the display are both 0.001 Hz . The frequency of input signal is 2 MHz . Find the overall frequency resolution in Hz and in number of LSD.
[3 M]
(b) Calculate the maximum time base error in frequency for the input signal in (a), assuming that the counter has not been calibrated for a year. Aging rate: $<2 \times 10^{-7}$ per month, Temperature variation: $<3 \times 10^{-6}\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$ and Line voltage effect: $<1 \times 10^{-7}$ for 10% variation. [3 M]
(c) Define Total Harmonic Distortion (THD) of a sinusoidal signal. Sketch the block diagram of the Distortion Analyzer that characterizes the THD of a signal. Describe in brief the functionality of each block.
[3 M]

Question 4:

a) Describe the three phases of a product's life cycle, through the "bathtub curve" of the product's reliability.
b) What is skin depth? What measures will you take to reduce magnetic field effect on the receiving circuit?
c) Explain ingress protection code for the enclosures.

