BITS-PILANI, K. K. BIRLA GOA CAMPUS Semester I, 2022-23 INSTR F311 - ELECTRONIC INSTRUMENTS AND INSTRUMENTATION TECHNOLOGY

Comprehensive examination, Regular [Closed Book]	Date: 17/12/2022
Maximum Marks: 70	Duration: 3 hours

Part A (30 Marks, First 60 minutes)

- This section carries 10 questions. The first 5 questions carry 2 marks each and the next 5 questions carry 3 marks each.
- Write the answers to the questions in Part-A on a separate, printed answersheet provided. Write only the final answers.
- Rough-work for Part A can be done only on the last three pages of the Main Answersheet.
- Use the Main Answersheet to write the answers to the questions in Part B.
- Prepare an index behind the cover page of the Main Answersheet.

First 5 questions: (5 questions x 2 marks = 10 marks)

Q.1 An unknown resistance of value 40 Ω is measured by passing a constant current of 2 mA and measuring the resultant DC voltage across the resistance. The resistance of the lead wires is 2 Ω . What is the difference V_{diff} (in mV) between the voltmeter readings when connected in Two-wire sensing and Four-wire sensing measurement setups?

Q.2 A 0-10 V Digital voltmeter with a 4 ½ digit display is used for measuring DC currents in the range 0-1 mA using an electronic circuit as shown in Fig. Q2. What is the Transimpedance gain R_f (in k Ω) of the amplifier A₁? Assume $R_1 = R_2 = 1 k\Omega$

Fig. Q2: Current measurement circuit

Q.3 In a Hall effect device, the current passing through the device is 3 A and a magnetic field of 0.4 T is applied perpendicular to the device. If the Hall-effect coefficient is 600 $\mu\Omega/T$, calculate the generated Hall voltage e_H (in mV).

Q.4 Calculate the time base error Δf_{tb} (in Hz) in an electronic counter for the measurement of frequency of a 12 MHz signal, if the crystal oscillator's frequency is 100 MHz and its accuracy is specified to be 20 ppb.

Q.5 The chart speed of a recording instrument is 2 cm/s. What is the distance d_{cycle} (in mm) to which one cycle of a 5 Hz signal would extend on the chart?

Next 5 questions: (5 questions x 3 marks = 15 marks)

Q.6 An amplifier is fed an input signal with frequency components $f_1 = 31.8$ kHz and $f_2 = 32.2$ kHz and analyzed for the Intermodulation components ($mf_1 \pm nf_2$) in the output. Write the values of the third order Intermodulation components $f_{IM,3,1}$ and $f_{IM,3,2}$ (in kHz) whose frequencies are close to those present in the input signal.

Q.7 A high impedance probe with a 10 M Ω resistance and 5 pF capacitance is connected to an oscilloscope with an input resistance of 1 M Ω . When the probe is connected, the effective capacitance decreased to 4.5 pF. What is the input capacitance C_{in} (in pF) of the oscilloscope?

Q.8 The reference frequency f_{ref} applied to an 8-bit Direct Digital Synthesis (DDS) chip is 10 MHz. What are (i) the Frequency resolution f_{res} (in Hz) and (ii) the Phase resolution ϕ_{res} (in rad)?

Q.9 In a laboratory, the mass of an object is measured using a beam balance whose tolerance is ± 0.1 g, which in turn is calibrated using a physical balance of tolerance ± 0.02 g, all specified with a 2 sigma confidence interval. (i) What is the Test Accuracy Ratio (TAR) in the measurements? (ii) What is the probability (in %) that the reading will lie within the specified tolerance limits.

Q.10 Calculate the output noise voltage V_0 due to shield voltage V_s as shown in Fig. Q10, if shield voltage is 1V at 1.5MHz, cable shield to conductor capacitance is 200 pF, the signal source impedance is 1000 Ω and the load resistance is 10 k Ω .

Fig. Q10. Shield at potential V_s

Part B (45 marks, 120 minutes)

Instructions:

- Write all the steps clearly and give explanations for complete credit.
- Overwritten answers and answers written with a pencil will not be rechecked.
- Make suitable assumptions wherever necessary and mention them clearly.

Question 1:

(a) Ayrton Shunt arrangement, (Fig. B.1.1) is designed to achieve DC current measurement ranges of 0-10 mA, 0-100 mA and 0-1 A with a PMMC mechanism that has an internal resistance of 50 Ω with a full scale deflection current of 1 mA. Find resistances R₁, R₂ and R₃. [4 M]

Fig. B1.1 Ayrton Shunt

(b) A Wheatstone's bridge is powered by a DC current source I_S (Fig. B1.2). The arm resistances R₁, R₂, R₃ and R₄ are equal and at the balanced condition equal to R₀. During an experiment, their values were found to undergo a fractional change given by $-\alpha$, $+2\alpha$, $+\alpha$ and -2α respectively, where $\alpha <<1$. The Galvanometer, whose resistance is R_G, carries a current I_G due to bridge imbalance.

 \rightarrow Obtain expressions for Thevenin voltage V_{TH} across c,d and I_G. as function of α , I_S , R₀, R_G.

→ If $R_0 = 1 \text{ k}\Omega$ and $R_G = 50 \Omega$, $J_S = 2 \text{ mA}$, calculate V_{TH} and I_G for $\alpha = 0.5\%$. [5 M]

Fig. B1.2 Wheatstone's Bridge

(c) Design a decade-programmable Fast Switching Direct Analog Synthesizer to generate 15.7 MHz from a reference of 10 MHz. The Synthesizer consists of identical modules, one to program each significant digit in the output frequency. Each module contains a mixer, an oscillator that produces one of 10 possible frequencies, band-pass filter and a \div 10 divider. [3 M]

Question 2:

An LCR bridge uses a sinusoidal current source I_s of 1 mA peak current at 1 kHz to power a standard resistor R_{std} and an unknown component Z_x both connected in series. The instantaneous differential voltages across R_{std} and Z_x given by e_{std} and e_x are fed to Channel-1 and Channel-2 respectively of a dual trace oscilloscope. Their time trace is shown in Fig. B.2. The grid spacing along the Time and Voltage axes are 125 µs and 250 mV respectively.

- (a) If the unknown component Z_x is modelled as a series combination of a resistor R_x and a capacitor, C_x , find the component values R_{std} , R_x and C_x . [4 M]
- (b) Sketch the X-Y plot (Lissajous figure) wherein Channel-1 and Channel-2 are configured as X- and Y- channels respectively. [3 M]
- (c) The impedance Z_x is now modelled at the same excitation frequency as an equivalent parallel combination of a resistor R_P and a capacitor C_P . Obtain the expressions for R_P and C_P as a function of R_x , C_x and a dimensionless parameter $\alpha = R_x C_x \omega$. Calculate α , R_P and C_P . [5 M]

Fig. B.2 Time trace of signals e_{std} and e_x

Question 3:

- (a) In a counter, the input channel noise is 200 μ V, and the input signal has 1 mV rms noise through the specified bandwidth. Slew rates corresponding to the rising and falling edges are 300 mV/ μ s and 400 mV/ μ s respectively. The ±1 count error and the least significant digit (LSD) in the display are both 0.001 Hz. The frequency of input signal is 2 MHz. Find the overall frequency resolution in Hz and in number of LSD. [3 M]
- (b) Calculate the maximum time base error in frequency for the input signal in (a), assuming that the counter has not been calibrated for a year. Aging rate: $< 2 \times 10^{-7}$ per month, Temperature variation: $< 3 \times 10^{-6}$ (0 °C to 50 °C) and Line voltage effect: $< 1 \times 10^{-7}$ for 10% variation. [3 M]
- (c) Define Total Harmonic Distortion (THD) of a sinusoidal signal. Sketch the block diagram of the Distortion Analyzer that characterizes the THD of a signal. Describe in brief the functionality of each block.
 [3 M]

Question 4:

a)	Describe the three phases of a product's life cycle, through the "bathtub curve" of t	the product's
	reliability.	[3 M]
b)	What is skin depth? What measures will you take to reduce magnetic field effect on	the receiving
	circuit?	[4 M]
c)	Explain ingress protection code for the enclosures.	[5 M]