BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 First Semester 2023-2024
 Mid Semester Exam (Closed book)
 Transducers and Measurement Techniques (INSTR F312)

Time: 90 Minutes
Max Marks:60
Date:09 Oct 2023
Note: This question paper has 2 (TWO) printed pages. Assume and clearly specify any missing data suitably. Marks are indicated against each question.
Q1. A system is to be designed for a robotic application where a DC shunt motor whose input voltage is proportional to torque and this torque is proportional to angular displacement θ (rad). The stiffness Ks of the spring can vary by $\pm 10 \%$ about the nominal value of $0.05 \mathrm{rad} \mathrm{N}^{-1} \mathrm{~m}^{-1}$.
[12 M]
Given that the following are available:
(i) An amplifier of gain 1000 , (ii) a voltage error detection unit, (iii) POT of sensitivity $100 \mathrm{~V} / \mathrm{rad}$ (iv) A DC shunt motor with sensitivity $0.2 \mathrm{~N}-\mathrm{m} \mathrm{V}^{-1}(\mathbf{v})$ A Spring with stiffness $\mathrm{Ks}\left(\mathrm{rad} \mathrm{N}^{-1} \mathrm{~m}^{-1}\right)$, and (vi) A stable angular displacement transducer of sensitivity $100 \mathrm{~V} \mathrm{rad}^{-1}$
(a) Draw a block diagram of the system, (i) open loop, (ii) closed loop using above mentioned components.
(b) Determine the value of angular displacement if input voltage is 100 V in case of open loop and close loop system. Comment on their values.
(c) calculate the effect of a 10% decrease in Ks on the sensitivity of the closed loop system over open loop system.

Q2. A platinum resistance sensor is used to interpolate between the triple point of water $\left(0^{\circ} \mathrm{C}\right)$, the boiling point of water $\left(100^{\circ} \mathrm{C}\right)$ and the freezing point of zinc $\left(419.6^{\circ} \mathrm{C}\right)$. The corresponding resistance values are $100.0 \Omega, 138.5 \Omega$ and 253.7Ω. The algebraic form of the interpolation equation is $R_{T}=R_{0}\left(1+\alpha T+\beta T^{2}\right)$, where $\mathrm{R}_{\mathrm{T}}(\Omega)=$ resistance at $\mathrm{T}^{\circ} \mathrm{C}, \mathrm{R}_{0}(\Omega)=$ resistance at $0^{\circ} \mathrm{C}$. Find the numerical form of the interpolation equation.
[8 M]

Q3. A capacitive transducer consists of two triangular plates placed side by side with a negligible gap between them and a rectangular plate moving laterally with a uniform air gap of 1 mm between the rectangular plate and triangular plate, as shown in Fig. Q3.
[15 M]
(a) Calculate the value of C_{1} and C_{2}
(b) Find the displacement sensitivity of C_{1} and C_{2} with respect to 'x'.

Q4. An unbonded strain gauge based accelerometer with a natural frequency of 150 Hz is shown in Fig. Q4(a). The magnitude of the strain due to prestressing $\left(e_{o}\right)$ is 2.5 times of the maximum strain developed due to applied acceleration. If the strain due to applied acceleration is sinusoidal in nature with $e=10 \sin (t) \times 10^{-4}$, then,
[18 M]
(a) Find the output voltage (V_{o}) generated from bridge circuit (Fig. Q4(b)) for a maximum DC supply voltage $\widehat{V_{S}}$ volts.
(b) Find the maximum output voltage $\left(V_{o}\right)$ generated from the bridge circuit, if $V_{S}=\widehat{V}_{S} \sin (20 t)$ volts. Also draw the typical output voltage waveform for this case.
(c) Now assume that the signal generated from bridge is corrupted by a zero-mean white gaussian noise with $\sigma=20 \mathrm{mV}$. If the corrupted signal is averaged for 50 sections, calculate the in SNR (in dB) before and after averaging.

Strain Gauge data

Resistance	$=120 \Omega$
Gauge factor	$=2.1$
Maximum current	$=50 \mathrm{~mA}$
Length at zero acceleration	$=2.3 \mathrm{~cm}$

Fig. Q4 (b)

Q5. Read the following statement from research paper, J.A. Rodriguez-Manfredi et al. "The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission," Space Science Reviews, pp. 217-248, 2021.
"The dynamic range of the Humicap® (a humidity sensor (HS)) changes with temperature, and the sensor also becomes logarithmically slower with decreasing temperature, its time constant is about 0.1 s at 293 K , but for example at $-40^{\circ} \mathrm{C}$ it is about 30 s and at $-70^{\circ} \mathrm{C}$ about 450 s .
(a) What will be frequency range for the Humicap®, for which the amplitude inaccuracies will be limited to $\pm 5 \%$ for (i) $20^{\circ} \mathrm{C}$ and (ii) $-70^{\circ} \mathrm{C}$.
(b) Suggest a method to compensate for this variation in time constant at different temperatures.

