BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI First Semester 2023-2024 Mid Semester Exam (Closed book) Transducers and Measurement Techniques (INSTR F312)

Max Marks:60

Date:09 Oct 2023

Note: This question paper has 2 (TWO) printed pages. Assume and clearly specify any missing data suitably. Marks are indicated against each question.

Q1. A system is to be designed for a robotic application where a DC shunt motor whose input voltage is proportional to torque and this torque is proportional to angular displacement θ (rad). The stiffness Ks of the spring can vary by ±10% about the nominal value of 0.05 rad N⁻¹ m⁻¹. [12 M]

Given that the following are available:

Time: 90 Minutes

(i) An amplifier of gain 1000, (ii) a voltage error detection unit, (iii) POT of sensitivity 100 V/rad (iv) A DC shunt motor with sensitivity 0.2 N-m V $^{-1}$ (v) A Spring with stiffness Ks (rad N $^{-1}$ m $^{-1}$), and (vi) A stable angular displacement transducer of sensitivity 100 V rad $^{-1}$

(a) Draw a block diagram of the system, (i) open loop, (ii) closed loop using above mentioned components.

(b) Determine the value of angular displacement if input voltage is 100 V in case of open loop and close loop system. Comment on their values.

(c) calculate the effect of a 10% decrease in Ks on the sensitivity of the closed loop system over open loop system.

Q2. A platinum resistance sensor is used to interpolate between the triple point of water (0 °C), the boiling point of water (100 °C) and the freezing point of zinc (419.6 °C). The corresponding resistance values are 100.0 Ω , 138.5 Ω and 253.7 Ω . The algebraic form of the interpolation equation is $R_T = R_0(1 + \alpha T + \beta T^2)$, where $R_T(\Omega)$ = resistance at T °C, $R_0(\Omega)$ = resistance at 0°C. Find the numerical form of the interpolation equation. [8 M]

Q3. A capacitive transducer consists of two triangular plates placed side by side with a negligible gap between them and a rectangular plate moving laterally with a uniform air gap of 1 mm between the rectangular plate and triangular plate, as shown in Fig. Q3. [15 M]

(a) Calculate the value of C_1 and C_2

(b) Find the displacement sensitivity of C_1 and C_2 with respect to 'x'.

Q4. An unbonded strain gauge based accelerometer with a natural frequency of 150 Hz is shown in Fig. Q4(a). The magnitude of the strain due to prestressing (e_o) is 2.5 times of the maximum strain developed due to applied acceleration. If the strain due to applied acceleration is sinusoidal in nature with $e = 10 \sin(t) \times 10^{-4}$, then, [18 M]

- (a) Find the output voltage (V_o) generated from bridge circuit (Fig. Q4(b)) for a maximum DC supply voltage \hat{V}_S volts.
- (b) Find the maximum output voltage (V_o) generated from the bridge circuit, if $V_S = \hat{V}_S \sin(20t)$ volts. Also draw the typical output voltage waveform for this case.
- (c) Now assume that the signal generated from bridge is corrupted by a zero-mean white gaussian noise with $\sigma = 20$ mV. If the corrupted signal is averaged for 50 sections, calculate the in SNR (in dB) before and after averaging.

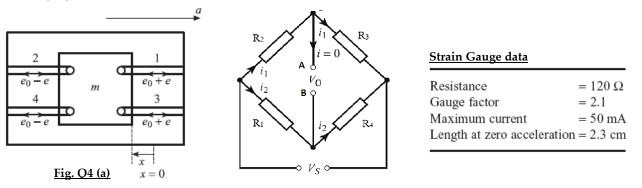


Fig. Q4 (b)

Q5. Read the following statement from research paper, J.A. Rodriguez-Manfredi *et al.* "The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission," Space Science Reviews, pp. 217-248, 2021.

"The dynamic range of the Humicap® (a humidity sensor (HS)) changes with temperature, and the sensor also becomes logarithmically slower with decreasing temperature, its time constant is about 0.1 s at 293 K, but for example at -40 °C it is about 30 s and at -70 °C about 450 s. [7 M]

- (a) What will be frequency range for the Humicap®, for which the amplitude inaccuracies will be limited to ± 5% for
 (i) 20 °C and (ii) -70°C.
- (b) Suggest a method to compensate for this variation in time constant at different temperatures.
