BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 Second Semester 2021-2022

 Comprehensive Exam - Part B (Open book)

 Comprehensive Exam - Part B (Open book)
 Industrial Instrumentation and Control (INSTR F343)

Time: 120 Minutes
Max Marks: 80
Date:19.05.2022
Note: This question paper has 5 questions. Assume and clearly specify any missing data suitably. Marks are indicated against each question. Unless otherwise specified, assume the final control element and measurement element transfer functions as unity.

Question 1: Derive the transfer function $G_{c}(s)=E_{0}(s) / E_{i}(s)$ for the analog controller realization as shown in Fig. 1 and express it in the form of $G_{c}(s)=K_{C}\left[1+\frac{1}{T_{i} s}+T_{d} s\right]$. Clearly mention the expressions of K_{c}, T_{i} and T_{d}.

Fig. 1

Question 2: Consider the closed loop control system shown in Fig. 2, where $G(s)=2 /(1+10 s)$.
(A) Find out the value of proportional gain K_{P} such that the closed-loop transfer function $G_{C L}(s)=Y(s) / R(s)$, exhibit critically damped response. Given $K_{I}=1.8$.
(B) Find the transfer function $Y(s) / R(s)$, if a parallel academic PI controller structure is used in place of I-P control strategy.
(C) Clearly elaborate the advantage/disadvantage obtained by I-P controller over PI controller by obtaining the time domain expression of $y(t)$ if $\mathrm{R}(\mathrm{s})$ is a unit step function. Consider the values of K_{P} and K_{I} as obtained in part (A) of this problem.

Fig. 2

Question 3: Find the relative gain array (RGA), for the multivariable system, $\mathbf{G}(\mathrm{s})$, whose transfer function matrix is shown below.

$$
\left[\begin{array}{l}
Y_{1}(s) \\
Y_{2}(s)
\end{array}\right]=\left[\begin{array}{ccc}
\frac{3}{2 s+1} & -\frac{0.5}{(s+1)(s+3)} & \frac{1}{\left(s^{2}+3 s+2\right)} \\
-10 & \frac{2}{(s+1)} & \frac{4}{(s+1)(3 s+1)}
\end{array}\right]\left[\begin{array}{l}
m_{1}(s) \\
m_{2}(s) \\
m_{3}(s)
\end{array}\right]
$$

Question 4: Forced Unit response of two systems [System ' 1 ' having a pole at -5 and a zero at -2 and system ' 2 ' having a pole at -10 and a zero at -2] is to be trained using ANN. The hidden layer has two neurons, the activation function at the hidden layer is tanh, at the output layer is purelin.

Show one forward and backward pass for $\mathrm{t}=1$. Weights from input to hidden layers are 0.1 , weights from hidden to output layer are 0.2 . Bias at hidden and output layer is 0.1 . learning rate is 0.5 .

Question 5: Design a programmed ladder logic diagram having one NO start button (at location I:0/1), which generates a waveform of 1 Hz having a duty cycle of 40% at output $\mathrm{O}: 0 / 1$ for 10 seconds only. You can use only two TON timers (with time base of 0.01 seconds) and an UP counter at location C5:0. Assume the timer addresses are T4:0 and T4:1.

