BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI Second Semester 2021-2022 Mid Semester Exam (Open book) Industrial Instrumentation and Control (INSTR F343)

Time:90 Minutes

Max Marks: 90

Date:14.03.2022

Note: This question paper has 5 questions. Assume and clearly specify any missing data suitably. Marks are indicated against each question. Unless otherwise specified, assume final control element and measurement element transfer functions as unity.

Question 1: A system G(s) is modeled as, $G_P(s) = G_1(s) + G_2(s)$, where $G_1(s)$ and $G_2(s)$ are first-order transfer functions. The individual unit step response of these systems, i.e. G_1 and G_2 , are shown in Fig. 1. Consider time units in seconds. [18]

- (A) Find the transfer functions $G_1(s)$, $G_2(s)$, and overall transfer function $G_P(s)$ and show it in the time constant form.
- (B) Design a controller using direct synthesis approach using an appropriate closed-loop response with $\lambda = 0.5$ seconds

and zero steady state error for constant setpoint. Express the controller in the form $G_c(s) = K_c \left(1 + \frac{1}{\tau_V s} + \tau_D s\right)$.

Question 2: A second order system having a pole-zero map as shown in Fig. 2. Design an IMC based feedback controller $G_c(s)$ in the form $G_c(s) = \left(K_P + \frac{K_I}{s} + K_D s\right)$ for this system with a λ value of unity. [18]

Question 3: Consider a transfer function G(s), where time constant values are in minutes,

$$G(s) = \frac{4(1-2s)}{(20s+1)(5s+1)(s+1)(0.1s+1)}$$

- (A) Find an approximate second order plus dead time model $\tilde{G}(s)$ using "Skogestad's Half rule" for the above mentioned G(s).
- (B) Find the Tyres-Luyben based K_P, K_I and K_D settings for controlling the system using the approximate transfer function. Use Pade's first order approximation for approximating dead-time. [18]

[9]

Question 4(*i***):** A first order process $G_1(s)$ when subjected to a unit step input applied at t = 0 seconds, shows the deviation in process variable as shown in Fig. 3. Design and draw an electronic analog PI controller for this process using op-amps, having proportional gain, $K_C = 8 \frac{(\tau_P + 0.5\theta)}{K_P(1+0.5\theta)}$ V/V and, $\tau_I = \tau_P$ seconds, where K_P is the process static gain, τ_P is the process time constant, and θ is the dead-time. Assume that a capacitor of 20 μ F is available. Consider time units in seconds.

Question 4(*ii*): A relay auto-tuner is used on a process. It was observed that the process output (*y*) and control input (*u*) to process are oscillating, as shown in Fig. 4. Find the settings for of K_P and K_I for this process using Z-N suggested gains for PI controller. [9]

Question 5: For a non-interacting two tank system, inflow '*m*' to upper tank is the manipulated variable, outflow of the upper tank is going to lower tank through a pipe having linear resistance ($R = 2 \text{ sec/m}^2$), the outflow of tank 2 i.e. '*u*' is through a pipe having no resistance and acts as a disturbance. Level controller (PD type with $K_C = 2$ and $T_d = 2 \text{ sec}$) put on the lower tank is changing 'm' through a control valve (First order system with all characterizing parameters unity) in inflow line of tank 1. Areas of upper and lower tanks are 1 m² and 2 m² respectively, heights of upper and lower tanks are h₁ and h₂ respectively. [18]

- (A) Derive the expression of $H_2(s)$ in terms of M(s) and U(s).
- (B) Draw the closed-loop block diagram putting transfer function in each block, assuming the transfer function of level measuring element is unity.
- (C) Find the expression for error in terms of the setpoint and load changes.
- (D) Find the static error for a unit step disturbance and unit step change in setpoint.

