Birla Institute of Technology \& Science, Pilani
 First Semester 2017-2018, MATH F111 (Mathematics I)
 Mid Semester Examination (Closed Book)

Time: 90 Min.
Date: October 12, 2017 (Thursday)
Max. Marks: 105

1. Write solution of each question on fresh page. Answer each subpart of a question in continuation.
2. Write END in the answer sheet just after the final attempted solution.
3. Test the absolute and conditional convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln n}{n-\ln n}$.
4. (a) Find the center, radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{2^{n}(4 x-8)^{n}}{n}$. Also identify the values of x for which the series converges (i) absolutely (ii) conditionally.
(b) Find the first three non-zero terms in the Taylor series expnasion of $\sin x$ about $x=\frac{\pi}{2}$.
5. (a) Shade the region in the first quadrant inside the circle $r=\sin \theta$ and outside the curve $r=\cos 2 \theta$.

Find all the intersection points and label them. Also find area of the shaded region.
(b) Find the length of the curve $r=\sqrt{1+\sin 2 \theta}, 0 \leq \theta \leq \pi \sqrt{2}$.
4. Find the unit tangent, normal, and binormal vectors at the point $\left(\sqrt{2}, \sqrt{2}, \frac{\pi}{2}\right)$ of the curve $\mathbf{r}(t)=2 \cos (t) \mathbf{i}+2 \sin (t) \mathbf{j}+2 t \mathbf{k}$. Also find the curvature at the given point.
5. (a) Find and sketch the domain of the function

$$
f(x, y)=\frac{\sqrt{x^{2}+y^{2}-9}}{x}
$$

Determine if the domain is an open region, a closed region, or neither. Justify your answer. [8]
(b) Examine the continuity of the following function at $(0,0)$:

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{\sin ^{-1}(x+2 y)}{\tan ^{-1}(2 x+4 y)}, & (x, y) \neq(0,0) \\
\frac{1}{2}, & (x, y)=(0,0)
\end{array}\right.
$$

6. (a) Let $f(x, y)=\left\{\begin{array}{ll}\frac{x y^{2}}{x^{2}+y^{4}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$. Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist. Is f differentiable at $(0,0)$? Justify.
(b) Let $f(x, y)=x^{2}+x y+y^{2}$ where $x=u v$ and $y=u / v$. Show that $u f_{u}+v f_{v}=2 x f_{x}$.
