BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI K.K. BIRLA GOA CAMPUS

FIRST SEMESTER 2019-2020
 Comprehensive Eaxamination (Closed Book)

MATH F 111
Date: December 05, 2019
Day: Thursday

MATHEMATICS-I
Time: 2hrs.
Max. Marks:90

INSTRUCTIONS

1. All questions are compulsory. 2. Begin answering a new question on a fresh page. 3. Write all the steps clearly for complete credit. 4. Number all the pages of your answer book and make a question-page index on the front page. Write your tutorial section/Instructor's name correctly. A penalty of 5 marks will be imposed, in case of incomplete the index and wrong section number/instructor's name.
2. Show that the curvature of a smooth plane curve $x=x(t), y=y(t)$ is

$$
\kappa(t)=\frac{\left|x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right|}{\left(x^{\prime 2}+y^{\prime 2}\right)^{3 / 2}}
$$

Use this formula to show that curvature of the polar curve $r=f(\theta)$ is

$$
\begin{equation*}
\kappa(\theta)=\frac{\left|r^{2}+2\left(r^{\prime 2}\right)-r r^{\prime \prime}\right|}{\left[r^{2}+r^{\prime 2}\right]^{3 / 2}} \tag{15}
\end{equation*}
$$

2. Using method of Lagrange multipliers find the point on the plane $x+y-z=1$ that is closest to the point $(0,-3,2)$ and calculate the distance also.
3. Find the linearization $L(x, y, z)$ of the function $f(x, y, z)=\sqrt{2} \cos x \sin (y+z)$ at the point $P_{0}(0,0, \pi / 4)$. Then find an upper bound for the magnitude of the error E in the approximation $f(x, y, z) \sim L(x, y, z)$ over the region R which is defined by $|x| \leq 0.01,|y| \leq 0.01$ and $|z| \leq 0.01$.
4. Write the triple integral for finding the volume of the region enclosed in between $z^{2}=$ $x^{2}+y^{2}, z^{2}=2 x^{2}+2 y^{2}, z=1 \& z=2$ in rectangular coordinates in order $d z d y d x$ (substraction of volume is not allowed).
5. Verify Divergence Theorem for the vector field $\mathbf{F}=2 x \mathbf{i}-y z \mathbf{j}+z^{2} \mathbf{k}$ where the surface is paraboloid $z=x^{2}+y^{2}$ capped by the disk $x^{2}+y^{2} \leq 1$ in the plane $z=1$.
6. Show that for the vector field $\mathbf{F}=\left(x z+\cos ^{3} y\right) \mathbf{i}+\left(y z+\cos ^{3} x\right) \mathbf{j}+\left(\frac{x^{2}+y^{2}}{2}\right) \mathbf{k}$, the line integrals

$$
\int_{C_{1}} \mathbf{F} . d \mathbf{r}=\int_{C_{2}} \mathbf{F} . d \mathbf{r},
$$

where C_{1} is the curve of intersection of the plane $x+y+z=1$ and the cylinder $x^{2}+y^{2}=1$ oriented counter clockwise and C_{2} is the circle $x^{2}+y^{2}=1$ on the $x y$-plane.

