BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI K.K. BIRLA GOA CAMPUS

FIRST SEMESTER 2019-2020 Comprehensive Eaxamination (Closed Book)

MATH F 111

Date: December 05, 2019 Day: Thursday MATHEMATICS-I

Time: 2hrs. Max. Marks:90

INSTRUCTIONS

1. All questions are compulsory. 2. Begin answering a new question on a fresh page. 3. Write all the steps clearly for complete credit. 4. Number all the pages of your answer book and **make a question-page index** on the front page. Write your **tutorial section/Instructor's name** correctly. A penalty of **5 marks** will be imposed, in case of incomplete the index and wrong section number/instructor's name.

1. Show that the curvature of a smooth plane curve x = x(t), y = y(t) is

$$\kappa(t) = \frac{|x'y'' - y'x''|}{(x'^2 + y'^2)^{3/2}}.$$

Use this formula to show that curvature of the polar curve $r = f(\theta)$ is

$$\kappa(\theta) = \frac{|r^2 + 2(r'^2) - rr''|}{[r^2 + r'^2]^{3/2}}$$

[15]

- 2. Using method of Lagrange multipliers find the point on the plane x + y z = 1 that is closest to the point (0, -3, 2) and calculate the distance also. [10]
- 3. Find the linearization L(x, y, z) of the function $f(x, y, z) = \sqrt{2} \cos x \sin(y + z)$ at the point $P_0(0, 0, \pi/4)$. Then find an upper bound for the magnitude of the error E in the approximation $f(x, y, z) \sim L(x, y, z)$ over the region R which is defined by $|x| \leq 0.01$, $|y| \leq 0.01$ and $|z| \leq 0.01$. [10]
- 4. Write the triple integral for finding the volume of the region enclosed in between $z^2 = x^2 + y^2$, $z^2 = 2x^2 + 2y^2$, z = 1 & z = 2 in rectangular coordinates in order dzdydx (substraction of volume is not allowed). [20]
- 5. Verify Divergence Theorem for the vector field $\mathbf{F} = 2x\mathbf{i} yz\mathbf{j} + z^2\mathbf{k}$ where the surface is paraboloid $z = x^2 + y^2$ capped by the disk $x^2 + y^2 \leq 1$ in the plane z = 1. [20]
- 6. Show that for the vector field $\mathbf{F} = (xz + \cos^3 y)\mathbf{i} + (yz + \cos^3 x)\mathbf{j} + (\frac{x^2 + y^2}{2})\mathbf{k}$, the line integrals

$$\int_{C_1} \mathbf{F}.d\mathbf{r} = \int_{C_2} \mathbf{F}.d\mathbf{r}$$

where C_1 is the curve of intersection of the plane x + y + z = 1 and the cylinder $x^2 + y^2 = 1$ oriented counter clockwise and C_2 is the circle $x^2 + y^2 = 1$ on the *xy*-plane. [15]

***** Best of Luck *****