BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI K.K. BIRLA GOA CAMPUS

FIRST SEMESTER 2019-2020
Mid-Term Test (Closed Book)
MATH F 111
Date: October 03, 2019
Day: Thursday (11:00-12:30)

MATHEMATICS-I
Time: 90 minutes.
Max Marks:90

INSTRUCTIONS

1. All questions are compulsory. 2. Begin answering a new question on a fresh page. 3. Write all the steps clearly for complete credit. 4. Number all the pages of your answer book and make a question-page index on the front page. Write your tutorial section/Instructor's name correctly. A penalty of 5 marks will be imposed, in case of incomplete the index and wrong section number/instructor's name.
2. Discuss the convergence of the following series:
$[5+5+5]$
(a) $\sum_{n=1}^{\infty} \frac{1}{n} \tan \left(\frac{1+n^{2}}{n^{2}}\right)$
(b) $\sum_{n=1}^{\infty} \frac{\sqrt{x^{2}+n}-|x|}{n^{2}}$, where x any real number.
(c) $\sum_{n=1}^{\infty} n^{n} x^{n}$, where x any real number.
3. Find the interval of convergence and radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{3^{n}(n+1)}$. Justify your answer.
4. Use $\epsilon-\delta$ definition to prove that the function $f(x, y)=\frac{x^{2}+y^{4}+x}{(x-1)^{2}+y^{4}+2 x}$ is continuous at $(0,0)$.
5. Consider the function

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { else }\end{cases}
$$

Find $f_{x}(0,0), f_{y}(0,0), f_{x y}(0,0)$ and $f_{y x}(0,0)$, if they exist. Justify your answer. [5+10]
5. Find an equation for the circle of curvature of the curve
$\mathbf{r}(t)=(2 \ln t) \mathbf{i}-\left(t+\frac{1}{t}\right) \mathbf{j}$, where $e^{-2} \leq t \leq e^{2}$ at the point $(0,-2)$, where $t=1$.
6. Compute curvature and torsion for the curve
$\mathbf{r}(t)=(2 \cos t) \mathbf{i}+t \mathbf{j}+(2 \sin t) \mathbf{k}$ at $t=\pi$.
7. Find the equations of osculating, normal and rectifying planes for the curve $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$ at the point $(1,1,1)$
8. Find the area of the common region bounded by both the curves $r=2-3 \cos \theta$ and $r=\cos \theta$.

