Birla Institute of Technology \& Science, Pilani

First Semester 2021-2022, MATH F111 (Mathematics-I)
Mid Semester Examination- New Time table (Closed Book)
Time: 90 Min.
Date: March 10, 2022
Max. Marks: 90

1. Draw figures as and when required. Notations/symbols have their usual meaning.
2. Start new question on a fresh page. Moreover, answer each subpart of a question in continuation.
3. (i). The area enclosed by the curve $r=a+a \cos \theta, a>0$ is $\frac{147 \pi}{2}$. Find the value of a.
(ii). The curve C has polar equation $r=1+2 \cos \theta, \quad 0<\theta<\pi / 2$. At the point P on C, the tangent to C is parallel to the initial ray. Given that O is the pole, find the length of the line $O P$. [5]
4. (i). Consider the curve $r^{2}=-\sin 2 \theta$.
(a) Test the curve for symmetries along x-axis, y-axis and origin.
(b) Find the points on the curve where slope of the tangent is $-1,0$ and ∞.
(c) Using (a) and (b), sketch the curve in polar coordinates.
(ii). Find points of intersection of the cardioid $r=1+\cos \theta$ and the circle $r=\sqrt{3} \sin \theta$. Also, find the length of the portion of the cardioid enclosed by the circle.
5. (i). A particle travelling in a straight line is located at the point $(1,-1,2)$ and has speed 2 at time $t=0$. The particle moves towards the point $(3,0,3)$ with constant acceleration $2 \mathbf{i}+\mathbf{j}+\mathbf{k}$. Find its position vector $\mathbf{r}(t)$ at time t.
(ii). Find the point on the curve $\mathbf{r}(t)=(12 \sin t) \mathbf{i}-(12 \cos t) \mathbf{j}+5 t \mathbf{k}$ at a distance 13π units along the curve from the point $(0,-12,0)$ in the direction of increasing arc length. Moreover, find torsion τ for the curve $\mathbf{r}(t)$.
[10]
(iii). For a twice differentiable plane curve $y=f(x)$, derive an expression for the curvature κ in terms of $f, f^{\prime}, f^{\prime \prime}$.
6. (i). Consider the function $f(x, y)=\frac{1}{\ln \left(x^{2}+y^{2}-1\right)}$. With justification, answer the following:
(a) What is domain D of f ?
(b) Find boundary of D.
(c) Is D open?
(d) Identify the level curves of f at a level $0 \neq c \in \mathbb{R}$.
(ii). Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as

$$
f(x, y)= \begin{cases}\frac{x^{2} y+x^{9}}{x^{8}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(a) Is f differentiable at $(0,0)$?
(b) Find the directional derivative of f at $(0,0)$ in the direction of a unit vector $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}$, if it exists.
(iii). Let $a, b \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice continuously differentiable function. If $z=e^{u} f(v)$, $u=a x+b y$ and $v=a x-b y$, then find $g(a, b)$ such that

$$
\begin{equation*}
b^{2} z_{x x}-a^{2} z_{y y}=g(a, b) e^{u} f^{\prime}(v) . \tag{8}
\end{equation*}
$$

5. Let $P(a, b, c)$ be a point on the surface $S: z^{2}=x^{3}+y^{2}$, where $a, b, c \in \mathbb{R}$. For what values of a, b and c, does the tangent plane to S at P passes through the origin?
