Birla Institute of Technology \& Science, Pilani Second Semester 2022-2023, MATH F112 (Mathematics-II)
 Comprehensive Examination

Max. Marks: 135
July 10, 2023
Time: 180 Min.

1. The question paper consists of two parts: Part-A(Closed Book) and Part-B(Open Book). Part-A is of 45 Marks \& 60 Minutes and Part-B is of 90 Marks \& 120 Minutes. Attempt questions of Part-A and Part-B on two separate answer sheets.
2. Answer sheet of Part-B will be given only after submitting the Part-A answer sheet. Part-A can be submitted anytime between 8:45 AM and 9:15 AM. Write Part-A/Part-B on the top right corner of the respective answer sheet.
3. Notations/symbols have their usual meaning.
4. Start answering each question on a new page and answer the sub-parts of each question in continuation. Write END at the end of the last attempted question in each answer sheet.
5. The use of a calculator is not allowed.

Time: 60 Min.

1. (a) Let $B=\left\{-x^{2}+2 x+1, x+1,-2 x^{2}+2 x+1\right\}$ and $B^{\prime}=\left\{-x^{2}+x, x, x+1\right\}$ be the ordered bases for P_{2}. If $[v]_{B}=[2,0,1]$ for some $v \in P_{2}$, then using $[v]_{B}$ determine $[v]_{B^{\prime}}$. Also, find v.
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator defined as

$$
T(x, y, z)=(x+y+z, 2 y+z, 2 y+3 z)
$$

If A is the matrix of T relative to the standard basis of \mathbb{R}^{3}, then find A and all the eigenvalues of A. Further, find a basis for the eigenspace corresponding to the smallest eigenvalue of A.
2. (a) Find all the values of $\sin ^{-1}(-i)$.
(b) Find the analytic function $f(z)=u(r, \theta)+i v(r, \theta)$ such that $f(1+i \sqrt{3})=i(1+3 \sqrt{3})$, where $u(r, \theta)=r^{2} \sin 2 \theta+r \sin \theta-3 \sqrt{3}$. Also, express f in terms of z.
(c) Let

$$
f(z)= \begin{cases}\frac{z^{5}}{|z|^{4}} & z \neq 0 \\ 0 & z=0\end{cases}
$$

Is f differentiable at $z=0$? Justify your answer.

Birla Institute of Technology \& Science, Pilani Second Semester 2022-2023, MATH F112 (Mathematics-II)

Max. Marks: 90
Time: $\mathbf{1 2 0}$ Min.

1. Notations/symbols have their usual meaning.
2. Start answering each question on a new page, and answer the sub-parts of each question in continuation. Write END at the end of the last attempted question.
3. (a) Let V and W be vector spaces and $T: V \rightarrow W$ be a linear transformation. If $v_{1}, v_{2}, \ldots, v_{n}$ be vectors in V, then prove or disprove the following:
(i) If the set $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}$ is linearly independent in W, then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent in V.
(ii) If the set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent in V, then $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}$ is linearly independent in W.
(b) Let $T: P_{2} \rightarrow P_{2}$ be a linear transformation such that

$$
\begin{equation*}
T(1+x)=1+x^{2}, \quad T\left(x+x^{2}\right)=x-x^{2}, \quad T\left(1+x^{2}\right)=1+x+x^{2} . \tag{9}
\end{equation*}
$$

Find $T\left(a+b x+c x^{2}\right)$.
(c) Evaluate $\int_{C} \bar{z} e^{z} d z$, where C is the positively oriented square with vertices $0,1,1+i$, and i. [15]
2. (a) Without using residues, evaluate

$$
\int_{C} \frac{\log (z+3)}{(z-1)(z-2)^{2}} d z
$$

where $C:|z-3|=5 / 2$, is traversed in the counterclockwise direction.
(b) Determine all the entire functions f such that $\operatorname{Im}(f(z)) \geq \operatorname{Im}(z)$ for all $z \in \mathbb{C}$.
3. (a) Find the Laurent series expansions of

$$
f(z)=\frac{z^{2}+z+3}{z^{3}+2 z^{2}+z+2}
$$

about the origin indicating all the possible regions where these expansions are valid.
(b) Find and classify all the singularities (essential, pole, removable etc.) of

$$
f(z)=\frac{e^{z}-1}{\sin z}
$$

and use residues to evaluate the integral $\int_{C} f(z) d z$, where C is the positively oriented circle $\left|z-\frac{3 \pi}{2}\right|=\pi$.
(c) Using the Cauchy residue theorem, evaluate

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\cos \theta}{2+\cos \theta} d \theta \tag{10}
\end{equation*}
$$

