Birla Institute of Technology & Science, Pilani Second Semester 2022-2023, MATH F112 (Mathematics-II)

Comprehensive Examination

Max. Marks: 135

July 10, 2023

Time: 180 Min.

- 1. The question paper consists of two parts: **Part-A**(**Closed Book**) and **Part-B**(**Open Book**). **Part-A** is of 45 Marks & 60 Minutes and **Part-B** is of 90 Marks & 120 Minutes. Attempt questions of **Part-A** and **Part-B** on two separate answer sheets.
- 2. Answer sheet of Part-B will be given only after submitting the Part-A answer sheet. Part-A can be submitted anytime between **8:45** AM and **9:15** AM . Write Part-A/Part-B on the top right corner of the respective answer sheet.
- 3. Notations/symbols have their usual meaning.
- 4. Start answering each question on a new page and answer the sub-parts of each question in continuation. Write **END** at the end of the last attempted question in each answer sheet.
- 5. The use of a calculator is not allowed.

Max. Marks: 45	PART-A(Closed Book)	Time: 60 Min.

- 1. (a) Let $B = \{-x^2 + 2x + 1, x + 1, -2x^2 + 2x + 1\}$ and $B' = \{-x^2 + x, x, x + 1\}$ be the ordered bases for P_2 . If $[v]_B = [2, 0, 1]$ for some $v \in P_2$, then using $[v]_B$ determine $[v]_{B'}$. Also, find v. [10]
 - (b) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined as

$$T(x, y, z) = (x + y + z, 2y + z, 2y + 3z).$$

If *A* is the matrix of *T* relative to the standard basis of \mathbb{R}^3 , then find *A* and all the eigenvalues of *A*. Further, find a basis for the eigenspace corresponding to the smallest eigenvalue of *A*. [12]

- 2. (a) Find all the values of $\sin^{-1}(-i)$.
 - (b) Find the analytic function $f(z) = u(r, \theta) + iv(r, \theta)$ such that $f(1 + i\sqrt{3}) = i(1 + 3\sqrt{3})$, where $u(r, \theta) = r^2 \sin 2\theta + r \sin \theta 3\sqrt{3}$. Also, express f in terms of z. [11]
 - (c) Let

$$f(z) = \begin{cases} \frac{z^5}{|z|^4} & z \neq 0, \\ 0 & z = 0. \end{cases}$$

Is *f* differentiable at z = 0? Justify your answer.

-END of PART A-

[3]

[9]

Max. Marks: 90

July 10, 2023

Time: 120 Min.

[9]

- 1. Notations/symbols have their usual meaning.
- 2. Start answering each question on a new page, and answer the sub-parts of each question in continuation. Write **END** at the end of the last attempted question.
- 1. (a) Let *V* and *W* be vector spaces and $T : V \to W$ be a linear transformation. If v_1, v_2, \ldots, v_n be vectors in *V*, then prove or disprove the following:
 - (i) If the set $\{T(v_1), T(v_2), \dots, T(v_n)\}$ is linearly independent in W, then $\{v_1, v_2, \dots, v_n\}$ is linearly independent in V. [3]
 - (ii) If the set $\{v_1, v_2, ..., v_n\}$ is linearly independent in V, then $\{T(v_1), T(v_2), ..., T(v_n)\}$ is linearly independent in W. [3]
 - (b) Let $T: P_2 \rightarrow P_2$ be a linear transformation such that

$$T(1 + x) = 1 + x^2$$
, $T(x + x^2) = x - x^2$, $T(1 + x^2) = 1 + x + x^2$.

Find
$$T(a + bx + cx^2)$$

- (c) Evaluate $\int_C \overline{z}e^z dz$, where *C* is the positively oriented square with vertices 0, 1, 1 + *i*, and *i*. [15]
- 2. (a) Without using residues, evaluate

$$\int_C \frac{\operatorname{Log}(z+3)}{(z-1)(z-2)^2} dz,$$

where C : |z - 3| = 5/2, is traversed in the counterclockwise direction. [15]

- (b) Determine all the entire functions f such that $\text{Im}(f(z)) \ge \text{Im}(z)$ for all $z \in \mathbb{C}$. [12]
- 3. (a) Find the Laurent series expansions of

$$f(z) = \frac{z^2 + z + 3}{z^3 + 2z^2 + z + 2}$$

about the origin indicating all the possible regions where these expansions are valid. [11]

(b) Find and classify all the singularities (essential, pole, removable etc.) of

$$f(z) = \frac{e^z - 1}{\sin z}$$

and use residues to evaluate the integral $\int_C f(z)dz$, where *C* is the positively oriented circle $|z - \frac{3\pi}{2}| = \pi$. [12]

(c) Using the Cauchy residue theorem, evaluate

$$\int_0^{2\pi} \frac{\cos\theta}{2+\cos\theta} d\theta.$$
 [10]

END of PART B-