Birla Institute of Technology \& Science, Pilani (Raj.)
 First Semester 2016-2017, MATH F211 (Mathematics III)
 Comprehensive Examination

Time: 3 Hours
Date: December 03, 2016 (Saturday)
Max. Marks: 120

1. The question paper consists of two parts. Part A (Closed Book) is of 40 Marks \& 60 Minutes and Part B (Open Book) is of 80 Marks \& 120 Minutes. Attempt questions of Part A and Part B on two separate answer sheets.
2. Answer sheet of Part B shall be given only after the submission of Part A answer sheet. Late submission of Part A is not allowed.
3. On the top right corner of the first answer sheet, write Part A, and on the second answer sheet, write Part B.
4. Begin solution of each question on a new page, and answer the parts (in any) of each question in continuation. Calculator is not allowed.
5. Write END at the end of the last attempted solution in each answer sheet.

Part A (Closed Book)

Time: 1 Hour
Max. Marks: 40
Q. 1 (a) Apply the method of variation of parameters to find a particular solution of the differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=\frac{1}{(1-x)^{2}}, \tag{12}
\end{equation*}
$$

and hence write its general solution.
(b) Solve the following differential equation:

$$
\begin{equation*}
y^{\prime}\left(x^{2} y^{3}+x y\right)=1 \tag{8}
\end{equation*}
$$

Q. 2 (a) Find Fourier series of the function $f(x)=|\sin x|, \quad-\pi \leq x<\pi$.
(b) Using the method of separation of variables, derive a solution for the following boundary value problem:

$$
\begin{align*}
y_{t t} & =a^{2} y_{x x} ; \quad 0<x<L, \quad t>0 \\
y(0, t) & =y_{x}(L, t)=0 ; \quad t \geq 0 \\
y(x, 0) & =f(x), \quad y_{t}(x, 0)=g(x) ; \quad 0<x<L \tag{15}
\end{align*}
$$

Part B (Open Book)

Time: 2 Hours
Max. Marks: 80
Q. 1 Find the general solution of the differential equation

$$
y^{\prime \prime}-4(\sec x+\tan x) y^{\prime}-4(y-2)=0 .
$$

about $x=\pi / 2$ in terms of hypergeometric functions.
Q. 2 (a) Show that

$$
\begin{equation*}
\frac{x}{2} J_{p-1}(x)=\sum_{k=0}^{\infty}(-1)^{k}(p+2 k) J_{p+2 k}(x) . \tag{8}
\end{equation*}
$$

(b) Prove that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{P_{n}(\cos \theta)}{n+1}=\log \left[\frac{\sin (\theta / 2)+1}{\sin (\theta / 2)}\right] \tag{12}
\end{equation*}
$$

Q. 3 (a) Find a closed form expression for the Laplace transform $L[f(x)]$ of $f(x)=e^{\{x\}}$, where $\{x\}=x-[x]$ denotes the fractional part of x. Hence, find a function $h(x)$ such that $L^{-1}\left[\frac{e^{p}-e}{\left(e^{p}-1\right)\left(p^{3}-1\right)}\right]$ is the convolution of $f(x)$ and $h(x)$.
(b) Show that in any interval of length π on the positive X -axis, any nontrivial solution of

$$
\left(e^{2 x}-1\right) y^{\prime \prime}+2\left(e^{2 x}+1\right) y^{\prime}+\left(e^{2 x}-1\right)\left(e^{x}+3\right) y=0
$$

has at least one zero.
Q. 4 (a) Reduce the differential equation

$$
\begin{equation*}
y^{\prime \prime \prime}+3 x^{2}\left(y^{\prime \prime}\right)^{2}-\sin \left(y^{\prime}\right)+\left(y^{\prime}\right)^{3}+3 x y=0 \tag{5}
\end{equation*}
$$

to a system of first order differential equations.
(b) Find all the eigen values for the following boundary value problem:

$$
\begin{equation*}
y^{\prime \prime}+y^{\prime}+\lambda y=0 ; \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0 \tag{15}
\end{equation*}
$$

where λ is a real number.

