Birla Institute of Technology \& Science, Pilani (Raj.)
 First Semester 2016-2017, MATH F211 (Mathematics III) Mid Semester Examination (Closed Book)

Time: 90 Min.
Date: October 04, 2016 (Tuesday)
Max. Marks: 90

1. Write solution of each question on fresh page. Answer each subpart of a question in continuation.
2. Write END in the answer sheet just after the last attempted solution.
3. (a) Test the exactness of the differential equation

$$
\left(e^{y}+2 x\right) d x+\left(x e^{y}+2 y\right) d y=0
$$

If the above given equation is exact, find its solution. If it is not exact, then make it exact by finding an integrating factor, and hence solve it.
(b) Let $y_{1}(x)$ be a given non-trivial solution of the differential equation

$$
y^{\prime \prime}-h(x) y=0
$$

where $h(x)$ is continuous on $[a, b]$. Then find the second linearly independent solution $y_{2}(x)$ of the above given differential equation, writing all the steps in the derivation of $y_{2}(x)$. Find the Wronskian of $y_{1}(x)$ and the derived solution $y_{2}(x)$.
(c) Consider the differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0
$$

where $P(x)$ and $Q(x)$ are continuous on $[a, b]$. If $y_{1}(x)$ and $y_{2}(x)$ are any two solutions of the above equation on $[\mathrm{a}, \mathrm{b}]$, then show that their Wronskian $W\left(y_{1}, y_{2}\right)$ is either identically zero or never zero on $[a, b]$.
[10]
2. (a) Transform the differential equation

$$
\left(1+x^{2}\right)^{2} y^{\prime \prime}+2(x-2)\left(1+x^{2}\right) y^{\prime}+4 y=0
$$

into a differential equation with constant coefficients by using an appropriate transformation, and hence solve it.
(b) Find the general solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-7 y^{\prime}+12 y=e^{2 x}\left(x^{3}-5 x^{2}\right) \tag{12}
\end{equation*}
$$

with the help of the operator method.
(c) Find the normal form of the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$, where n is a non-negative integer and $|x|<1$.
3. (a) Show that $x=0$ is a regular singular point of the differential equation $x y^{\prime \prime}+2 y^{\prime}+x y=0$. Find its Frobenius series solution corresponding to the larger root of the indicial equation around $x=0$, and express it in terms of elementary functions.
(b) Transform the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+y=0$ into a hypergeometric differential equation, and hence express its general solution near $x=-1$ in terms of hypergeometric functions.

