~~~~~~

Note: Start answering each question on a new page. Answer all sub-parts together.

~~~~~~~

Q1. (a) Find the general solution of the differential equation	
$xy' + 2 = x^3(y-1)y',$	
by converting it into linear differential equation.	[14]
(b) Solve the differential equation $2yy'' = 1 + (y')^2$.	[12]
Q2. (a) Find a particular solution of the differential equation	
$y'' - 4y' + 3y = \sin 3x \cos 2x$,	
by using operator method, and hence find the general solution.	[10]
(b) Find a particular solution of the following differential equation	
$x^2y'' - 3xy' + 4y = \log x \qquad (x > 0),$	
by using method of variation of parameters, and hence find the general solution.	[16]
Q3. (a) By a suitable change of dependent variable, reduce the differential equation $(x-2)(x^2 - 5x + 6)y'' + 4(x^2 - 5x + 6)y' + (x^2 - 6)y = 0.$	
to a normal form. Hence decide whether a nontrivial solution of this differential equa	ation
has infinitely many zeros on negative x-axis.	[13]
(b) In terms of hypergeometric functions, find the general solution near $x = 2$ of the	[-•]
differential equation	
$(9x^2 - 9x - 18)y'' + (24x - 30)y' + 4y = 0.$	[13]
Q4. (a) Determine whether $x = 0$ is an ordinary point or a regular singular point or an irreg	ular
singular point for the following differential equations with proper justification:	
(i) $(e^x - 1)y'' + (\sin x)y' + xy = 0;$	
(ii) $x^3y'' + (\sin x - x)y' + (\sin x)y = 0;$	[3+3]
(b) Using the method of Frobenius series solution, find a Frobenius series solution of the differential equation	ie

$$(x^{2} + 2x)y'' + 2(1 + x)y' - 2y = 0,$$

near x = 0. Hence find the general solution. Do not use hypergeometric functions. [21]

*****END*****