BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
 K K BIRLA - GOA CAMPUS
 MID SEMESTER EXAM (CLOSED BOOK)
 FIRST SEMESTER 2019-2020

Day: Thursday

MATH F211
Time: 90 Minutes
Max. Marks: 90

INSTRUCTIONS: 1. There are 3 questions. All questions are compulsory. 2. Begin answering a new question on a fresh page. 3. Write all the steps clearly and give explanations for complete credit. 4. Number all the pages of your answer book and make a question-page index on the front page of main answer sheet. A penalty of $\mathbf{2}$ marks will be imposed, in case the index is incomplete. 5. Calculator exchange is not allowed.

1. (a) Use method of undetermined coefficients to find a particular solution of the following differential equation and hence write its general solution

$$
x^{2} y^{\prime \prime}-x y^{\prime}-3 y=x^{3} \ln x, \quad x>0
$$

(b) Show that if $\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) /(N y-M x)$ is a function $g(z)$ of the product $z=x y$, then show that $\mu=e^{\int g(z) d z}$ is an integrating factor for the differential equation $M(x, y) d x+N(x, y) d y=0$. Use it to find the general solution of the following differential equation

$$
x d y+y d x+3 x^{3} y^{4} d y=0
$$

2. (a) Let $y_{1}(x)=1-x$ and $y_{2}(x)=x^{3}$. Show that (i) y_{1} and y_{2} are linearly independent in the interval $[-1,2]$, and (ii) $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ can not be general solution to the differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, where $p(x), q(x)$ are continuous functions on $[-1,2]$ and c_{1}, c_{2} are arbitrary constants.
(b) Use method of variation of parameters to find a particular solution and hence write the general solution of the following nonhomogeneous linear system of differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=-2 x+y+2 e^{-t} \\
& \frac{d y}{d t}=x-2 y
\end{aligned}
$$

3. (a) Use operator method to find a particular solution of the following differential equation and hence write the general solution

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=e^{x} \sin x
$$

(b) Find two linearly independent Frobenius series solutions of the following differential equation near the singular point $x=0$. Hence, write its general solution.

$$
x y^{\prime \prime}+2 y^{\prime}+x y=0
$$

Represent solutions in terms of elementary functions.

