# Birla Institute of Technology \& Science, Pilani <br> MATH F211 (Mathematics III) 

First Semester 2022-2023
Comprehensive Examination
Time: 180 Minutes
Date: December 17, 2022 (Saturday)
Max. Marks: 135

1. The question paper consists of two parts: Part-A (Closed Book) for 80 minutes and Part-B (Open Book) for 100 minutes. Attempt questions of Part-A and Part-B in two separate answer sheets.
2. Write Part-A and Part-B on top right corner of the two answer sheets provided. Answer each subpart of a particular question in continuation.
3. Part-B question paper and answer sheet will be given only after submission of part-A answer sheet. Early submission of Part-A is allowed. Write END in the answer sheet just after the final solution.
Q. 1 (a) Find two independent Frobenius series solutions of the equation
$[14+6]$

$$
x y^{\prime \prime}-y^{\prime}+4 x^{3} y=0
$$

(b) If $y_{1}(x)$ and $y_{2}(x)$ are any two solutions of the equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0,
$$

with $P$ and $Q$ being continuous functions on the interval $[a, b]$, then show that their Wronskian $W=W\left(y_{1}, y_{2}\right)$ is either identically zero or never zero on $[a, b]$.
Q. 2 Using the method of variation of parameters, find the general solution of the following system of differential equations

$$
\begin{gathered}
\frac{d x}{d t}=x+y+3 e^{3 t} \\
\frac{d y}{d t}=4 x-2 y+4 e^{3 t}
\end{gathered}
$$

without converting into a second order differential equation.
Q. 3 (a) Find the Fourier series for the function

$$
f(x)=x \sin x, \quad-\pi<x<\pi
$$

and hence, find the value of

$$
1+2\left(\frac{1}{1 \times 3}-\frac{1}{3 \times 5}+\frac{1}{5 \times 7}-\cdots\right)
$$

(b) Find the Fourier sine series for

$$
\begin{aligned}
f(x) & =x(\pi-x), \quad 0<x<\pi \\
& * * * \text { END }^{* * *}
\end{aligned}
$$

