Birla Institute of Technology \& Science, Pilani
 MATH F211 (Mathematics-III)

First Semester 2023-2024
Mid-Sem Examination (Closed Book)
Time: 90 Minutes
Date: October 12, 2023 (Thursday)
Max. Marks: 105

1. Notations and symbols have their usual meaning.
2. Start a new question on a fresh page. Moreover, answer each subpart of a question in continuation.
3. Write END at the end of the last attempted question.
Q. 1 (a) Examine the exactness of the differential equation

$$
y\left(2 x^{2}-x y+1\right) d x+(x-y) d y=0 .
$$

If it is exact, then find the general solution. Otherwise, find its general solution by determining an appropriate integrating factor.
(b) Let y_{1} and y_{2} be two linearly independent solutions of the differential equation

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0,
$$

where $P(x)$ and $Q(x)$ are continuous functions of x in $[-1,1]$. Derive expressions for $P(x)$ and $Q(x)$ in terms of y_{1}, y_{2}, and their derivatives. Further, if $y_{1}=e^{2 x}$ and $y_{2}=x e^{2 x}$ are the solutions of the given differential equation, then find the value of $P(0)+Q(0)+2023$.
Q. 2 (a) Identify one solution of the differential equation

$$
x y^{\prime \prime}-2(x+1) y^{\prime}+(x+2) y=0, \quad x>0 .
$$

Using this, find another linearly independent solution. Hence, write the general solution of the given differential equation.
(b) Using the method of undetermined coefficients, find a particular solution of the differential equation

$$
\begin{equation*}
y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}(x+\cos x) \tag{16}
\end{equation*}
$$

Q. 3 (a) Using the method of variation of parameters, find a particular solution of the differential equation

$$
\begin{equation*}
(2 x+1) y^{\prime \prime}-2 y^{\prime}-(2 x+3) y=(2 x+1)^{2} e^{-x} . \tag{16}
\end{equation*}
$$

(b) Using the Sturm comparison theorem, show that every non-trivial solution of the differential equation

$$
\begin{equation*}
\left(e^{2 x}-1\right) y^{\prime \prime}+2\left(e^{2 x}+1\right) y^{\prime}+\left(e^{2 x}-1\right)\left(e^{x}+3\right) y=0 \tag{11}
\end{equation*}
$$

has an infinite number of zeros on the positive x-axis.
Q. 4 (a) Find the general solution of the differential equation $\left(x^{2}+1\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0$ in terms of power series around $x=0$.
(b) In terms of hypergeometric functions, find the general solution near $x=-2$ of the differential equation

$$
\begin{equation*}
\left(x^{2}-5 x-14\right) y^{\prime \prime}+(4 x+2) y^{\prime}+2 y=0 . \tag{16}
\end{equation*}
$$

