Birla Institute of Technology \& Science, Pilani
 MATH F211 (Mathematics-III)

First Semester 2023-2024
Comprehensive Examination: PART-A (Closed Book)
Time: 100 Minutes
Date: December 14, 2023 (Thursday)
Max. Marks: 75

1. Notations and symbols have their usual meaning.
2. Start a new question on a fresh page. Moreover, answer each subpart of a question in continuation.
3. Write END at the end of the last attempted question.
Q. 1 (a) Using the method of Laplace transforms, solve the following initial value problem:

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+5 y=3 e^{-x} \cos x, y(0)=0, y^{\prime}(0)=0 \tag{8}
\end{equation*}
$$

(b) Using the method of Laplace transforms, evaluate the following integrals:
(i) $\int_{0}^{\infty} e^{-x} x^{2} \sin x d x$
(ii) $\int_{0}^{\infty} \frac{\sin (x t)}{t} d t, t>0$
Q. 2 Using the method of variation of parameters, find the general solution of the following system of differential equations

$$
\begin{gather*}
\frac{d x}{d t}=7 x+6 y+e^{-t} \\
\frac{d y}{d t}=2 x+6 y+2 e^{-t} \tag{18}
\end{gather*}
$$

without converting into a second order differential equation.
Q. 3 Find the Fourier series of $f(x)$, where

$$
f(x)= \begin{cases}x^{2}, & -\pi \leq x \leq 0 \\ 0, & 0<x<\pi\end{cases}
$$

Hence, evaluate the sum of infinite series

$$
\begin{equation*}
1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots \tag{16}
\end{equation*}
$$

Q. 4 (a) The one-dimensional equation for the vibrating string of length $L>0$ which is fixed at the two end points ($x=0$ and $x=L$) can be given as $a^{2} \frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial^{2} y}{\partial t^{2}}$, where $a>0$. Now, by using the method of the separation of variables, compute the expression for the general solution of the deflection $y(x, t)$ such that the initial transverse velocity $\frac{\partial y}{\partial t}(x, 0)$ of the string is zero and the initial spatial profile $y(x, 0)$ is $f(x)$. [14]
(b) Now, by using the results obtained in (a) compute the deflection $y(x, t)$ (first three terms) of a vibrating string of length $L=\pi$ with its ends ($x=0$ and $x=\pi$) fixed and zero initial transverse velocity. The initial spatial profile $f(x)$ of the string is given as:

Birla Institute of Technology \& Science, Pilani
 MATH F211 (Mathematics-III)

First Semester 2023-2024
Comprehensive Examination: PART-B (Open Book)
Time: 80 Minutes
Date: December 14, 2023 (Thursday)
Max. Marks: 60

1. Notations and symbols have their usual meaning.
2. Start a new question on a fresh page. Moreover, answer each subpart of a question in continuation.
3. Write END at the end of the last attempted question.
Q. 1 Find the solution of the initial value problem

$$
\begin{equation*}
(2 x \log x)^{2} y^{\prime \prime}+4 x(\log x)^{2} y^{\prime}+y=\log x \quad(x>e) \text { such that } y(e)=1, y^{\prime}(e)=0 . \tag{16}
\end{equation*}
$$

Q. 2 (a) Prove or disprove that

$$
\sum_{m=0}^{n}(2 m+1) P_{m}(x) P_{m}(y)=\frac{n+1}{x-y}\left\{P_{n+1}(x) P_{n}(y)-P_{n}(x) P_{n+1}(y)\right\}, \text { where } x \neq y
$$

Hence, find the value of $\sum_{m=0}^{10}(2 m+1) P_{m}(x)$ in terms of P_{10} and P_{11}.
(b) Evaluate the integral

$$
\begin{equation*}
I=\int_{-1}^{1} \frac{1}{\sqrt{1-x}} P_{n}(x) d x \tag{10}
\end{equation*}
$$

Q. 3 (a) If $\int \frac{J_{1}(\sqrt{x})}{\sqrt{x}} \sin (\sqrt{x}) d x=A(x) \cos (\sqrt{x})+B(x) \sin (\sqrt{x})$, where $x>0$, then find $A(x)$ and $B(x)$.
(b) Using mathematical induction, prove that

$$
\begin{equation*}
\left(\frac{1}{x} \frac{d}{d x}\right)^{m}\left[x^{-n} J_{n}(x)\right]=(-1)^{m} \frac{1}{x^{n+m}} J_{n+m}(x), \quad x>0 \tag{10}
\end{equation*}
$$

where $\left(\frac{1}{x} \frac{d}{d x}\right)^{m} y=\left(\frac{1}{x} \frac{d}{d x}\right)^{m-1}\left(\frac{1}{x} \frac{d y}{d x}\right)$ for all $m \in \mathbb{N}$

