Birla Institute of Technology and Science, Pilani (Raj.)

First Semester, 2023-24
MATH F212 (Optimization)
Mid Semester Examination (Closed Book)
Max. Marks: 70
Max. Time: 90 Minutes Date: OCT. 11, 2023, 11.00 am -12.30 pm
Q. 1 The manufacturer utilizes three resources: person-hours, machine hours, and cloth material to produce two dress types, Type A and Type B. Type A dresses generate a profit of ₹ 160 each, while Type B dresses yield a profit of ₹ $\mid 180$ each. The manufacturer's daily capacity allows for the production of either 50 Type A dresses or 20 Type B dresses in terms of person- hours. When it comes to machine hours, the capacity permits the production of 36 Type A dresses or 24 Type B dresses each day. The daily availability of cloth material is limited but sufficient for 30 dresses of either type. Formulate this as a linear programming problem to maximize profit and convert it into standard form. [6]
Q. 2 Suppose that the feasible region of the LPP

$$
\text { Max } c^{T} x \text { subject to } A x=b, \text { is bounded, }
$$

where $A=\left[a_{i j}\right], 1 \leq i \leq m, 1 \leq j \leq n, c=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right), x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ and $b=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right)$.
Show that the optimal solution of this LPP always occur at one of the feasible region's extreme point.
Q. 3 Solve the following LPP by using the two-phase method:

$$
\begin{gather*}
\text { Maximize } \mathrm{z}=x_{1}+2 x_{2}+3 x_{3}-x_{4} \\
\text { subject to } x_{1}+2 x_{2}+3 x_{3} \geq 15 \\
2 x_{1}+x_{2}+5 x_{3}=20 \\
x_{1}+2 x_{2}+x_{3}+x_{4}=10 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \tag{14}
\end{gather*}
$$

Q. 4 Write the dual of the following primal problem

$$
\begin{align*}
\text { Min } \mathrm{z} & =5 x_{1}+6 x_{2} \\
\text { subject to } \quad x_{1}+x_{2} & \geq 2 \\
4 x_{1}+x_{2} & \geq 4 \\
x_{1}, x_{2} & \geq 0 \tag{12}
\end{align*}
$$

Solve primal problem by dual simplex method.
Q. 5 Solve the LPP by Revised Simplex method

$$
\begin{array}{r}
\operatorname{Max} \mathrm{z}=x_{1}+2 x_{2} \\
\text { Subject to } x_{1}+x_{2} \leq 3 \\
x_{1}+2 x_{2} \leq 5 \\
3 x_{1}+x_{2} \leq 6 \\
x_{1}, x_{2} \geq 0 \tag{10}
\end{array}
$$

Q. 6 The optimal table of the following LP

$$
\begin{aligned}
& \text { Minimize } \mathrm{z}=2 \mathrm{x}_{1}+\mathrm{x}_{2} \\
& \text { Subject to } 3 \mathrm{x}_{1}+\mathrm{x}_{2}=3 \\
& 4 \mathrm{x}_{1}+3 \mathrm{x}_{2} \geq 6 \\
& \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 3 \\
& \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{aligned}
$$

by solving M -method is

Basis	\mathbf{Z}	\mathbf{x}_{1}	$\mathbf{x}_{\mathbf{2}}$	\mathbf{s}_{1}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	\mathbf{s}_{3}	Solution
\mathbf{z}	1	0	0	$-\frac{1}{5}$	$\frac{2}{5}-M$	$\frac{1}{5}-M$	0	$\frac{12}{5}$
\mathbf{x}_{1}	0	1	0	$\frac{1}{5}$	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{3}{5}$
\mathbf{x}_{2}	0	0	1	$-\frac{3}{5}$	$-\frac{4}{5}$	$\frac{3}{5}$	0	$\frac{6}{5}$
\mathbf{s}_{3}	0	0	0	1	1	-1	1	0

Suppose one activity $\left(x_{3}\right)$ is added to the given LPP with coefficients $(2,1,1)^{\top}$ for constraints and its coefficient in the objective function is 3 . Use post optimal analysis to find the solution of new LPP.
Q. 7 Find the initial basic feasible solution for the following transportation problem by VAM.

	D1	D2	D3	D4	
S1	1	5	3	3	32
S2	3	7	1	2	15
S3	0	2	7	3	12
	21	12	11	17	

This solution is degenerate or not. Justify your answer.

