- Q.1 The manufacturer utilizes three resources: person-hours, machine hours, and cloth material to produce two dress types, Type A and Type B. Type A dresses generate a profit of ₹160 each, while Type B dresses yield a profit of ₹180 each. The manufacturer's daily capacity allows for the production of either 50 Type A dresses or 20 Type B dresses in terms of person- hours. When it comes to machine hours, the capacity permits the production of 36 Type A dresses or 24 Type B dresses each day. The daily availability of cloth material is limited but sufficient for 30 dresses of either type. Formulate this as a linear programming problem to maximize profit and convert it into standard form. [6]
- Q.2 Suppose that the feasible region of the LPP

Max $c^T x$ subject to Ax = b, is bounded,

where
$$A = [a_{ij}], 1 \le i \le m, 1 \le j \le n, c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 and $b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$.

Show that the optimal solution of this LPP always occur at one of the feasible region's extreme point. [10]

Q.3 Solve the following LPP by using the two-phase method:

Maximize
$$z = x_1 + 2x_2 + 3x_3 - x_4$$

subject to $x_1 + 2x_2 + 3x_3 \ge 15$
 $2x_1 + x_2 + 5x_3 = 20$
 $x_1 + 2x_2 + x_3 + x_4 = 10$
 $x_1, x_2, x_3, x_4 \ge 0$
[14]

Q.4 Write the dual of the following primal problem

 $\text{Min } z = 5x_1 + 6x_2$ subject to $x_1 + x_2 \ge 2$ $4x_1 + x_2 \ge 4$ $x_1, x_2 \ge 0$

Solve primal problem by dual simplex method.

Q.5 Solve the LPP by Revised Simplex method

Max
$$z = x_1 + 2x_2$$

Subject to $x_1 + x_2 \le 3$
 $x_1 + 2x_2 \le 5$
 $3x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$
[10]

P.T.O.

[12]

 $Q.6\ \mbox{The optimal table of the following LP}$

Minimize
$$z = 2x_1 + x_2$$

Subject to $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 3$
 $x_1, x_2 \ge 0$

by solving M-method is

Basis	Z	X 1	X 2	S 1	R1	R ₂	S ₃	Solution
Z	1	0	0	$-\frac{1}{5}$	$\frac{2}{5}-M$	$\frac{1}{5}-M$	0	$\frac{12}{5}$
X 1	0	1	0	$\frac{1}{5}$	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{3}{5}$
X ₂	0	0	1	$-\frac{3}{5}$	$-\frac{4}{5}$	$\frac{3}{5}$	0	$\frac{6}{5}$
S ₃	0	0	0	1	1	-1	1	0

Suppose one activity (x_3) is added to the given LPP with coefficients $(2, 1, 1)^T$ for constraints and its coefficient in the objective function is 3. Use post optimal analysis to find the solution of new LPP. [6]

Q.7 Find the initial basic feasible solution for the following transportation problem by VAM.

	D1	D2	D3	D4	
S 1	1	5	3	3	32
S 2	3	7	1	2	15
S 3	0	2	7	3	12
	21	12	11	17	

This solution is degenerate or not. Justify your answer.

[12]

****END****