BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI
 First Semester 2022-2023
 MATH F213 (Discrete Mathematics)
 Comprehensive Examination (Part A : Closed Book)

Max. Marks : 50
Max. Time : 105 mins ($=1 \mathrm{hr} 45 \mathrm{mins}$)

- Notations/symbols have their usual meaning.
- Start new question on a fresh page. Moreover, answer each subpart of a question in continuation.

1. (a) Find the general solution of the IHR

$$
\begin{equation*}
a_{n}-5 a_{n-1}+6 a_{n-2}=3^{n}+3^{n-1} 4+3^{n-2} 4^{2}+\cdots+3^{n-i} 4^{i}+\cdots+4^{n} ; n \geq 2 \tag{10}
\end{equation*}
$$

(b) Using an appropriate substitution, find the general solution of $a_{n}+4 n a_{n-1}+4 n(n-1) a_{n-2}=0 ; n \geq 2$.
2. Construct two digraphs which have same degree spectrum but they are not isomorphic. Justify your answer.
3. Prove or disprove :
(a) For a relation R on a nonempty set A, if $a R a \forall a \in A$ and for all $a, b, c \in A, a R b, b R c$ implies $a R c$, then R is symmetric.
(b) Let R be a symmetric and transitive relation on a nonempty set A. Show that if for all $a \in A$ there exists $b \in A$ such that $a R b$, then R is an equivalence relation on A.
4. Let A be the set of all real valued functions on the real interval $[0,2]$ and R be a relation on A defined by: for any $f, g \in A, f R g$ if and only if $f(x) \leq g(x) \forall x \in[0,2]$.
(a) Show that R is a partial order on A.
(b) Let $f, g \in A$ be given by $f(x)=x \forall x \in[0,2]$ and $g(x)=x^{2} \forall x \in[0,2]$. Find the join $f \vee g \in A$ if it exists, otherwise justify why it does not exist.
5. Let $P(\{0,1\})$ be the power set of $\{0,1\}$ and let $A=\{0,1\} \times P(\{0,1\})$. Define a partial order R on A by $(x, S) R(y, T)$ if and only if $x<y$, or $x=y$ and $S \subset T$ for any $(x, S),(y, T) \in A$.
(a) Draw the Hasse diagram of (A, R).
(b) Find the set of all upper bounds of $\{(0,\{0\}),(1, \emptyset)\}$.
6. Let $A=\{a, b, c, d\}$ and $R=\{(a, b),(b, c),(c, c),(c, b)\}$ be a relation on A. Find R^{k} for all $k=1,2,3,4$ and hence the transitive closure of R.

BIRLA INSTITUTE OF TECHNOLOGY \& SCIENCE, PILANI
 First Semester 2022-2023
 MATH F213 (Discrete Mathematics)
 Comprehensive Examination (Part B : Open Book)
 Max. Marks : 40
 Max. Time : 75 mins ($=1 \mathrm{hr} 15 \mathrm{mins}$)

- Notations/symbols have their usual meaning.
- Start new question on a fresh page. Moreover, answer each subpart of a question in continuation.

1. Symbolize the following inference and check for its validity. Justify each step.

A student in Section 1 of the course has not submitted the assignment.
A student in Section 2 of the course has not submitted the assignment.
Every student in Section 2 passed the mid-semester exam.
Therefore, someone who passed the mid-semester exam has not submitted the assignment.
2. A bookseller sells at least 1 book each day for 100 consecutive days, selling a total of 150 books. Prove that for every n with $1 \leq n \leq 49$, there is a period of consecutive days during which a total of n books were sold.
3. Find the number of solutions of the equation

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{11}=-300,-50 \leq x_{i} \leq 100 \forall i=1, \ldots, 11 \tag{10}
\end{equation*}
$$

(no need to simplify binomial coefficients.)
4. For $n \geq 0$, let $a_{n}=F_{3 n}$, the $3 n$-th Fibonacci number. Find (and prove) a second order linear recurrence relation with constant coefficients for $\left(a_{n}\right)$. Hence find a closed form for the generating function for $\left(a_{n}\right)$ using the method of generating functions.

