Birla Institute of Technology and Science, Pilani (Pilani Campus)
 First Semester 2022-23
 MATH F213 Discrete Mathematics Mid-Semester Examination
 Time: 90 mins Date: 4-11-2022 Max. Marks: 70

Note. The total number of questions is 8. All questions are compulsory.

1. Consider the proposition :

Good batting as well as bowling is necessary for the team to be a winner or a runner.
Let p : The team has a good batting, q : The team has a good bowling, r : The team is a winner, s : The team is a runner.
Answer the following with justification.
(A) Write symbolically a proposition equivalent to the opposite of above proposition using p, q, r, s and the connectives negation and disjunction only.
(B) Assume the converse of the original proposition has the truth value F. If possible then determine the truth value of the following proposition, otherwise explain why it is not possible :
Good batting is sufficient for a team to be a winner, or good bowling is sufficient for the team to be a runner.
2. Is the following inference valid? Justify your answer using the abbreviated truth table method.

If A is a winner then B or C is a semifinalist. If B is a semifinalist then A is not a winner. If D is a semifinalist then C is not a semifinalist.
Therefore if A is a winner then D is not a semifinalist
3. There are 30 Mathematics, 20 Physics, 9 Chemistry, 15 Geography and 9 Philosophy books only in a library. Answer the following questions with justification :
(A) What is the least number n such that randomly chosen n books of the library contain at least 10 books of same subject?
(B) What is the least number n such that randomly chosen n books of the library contain at least 10 books of Mathematics or at least 2 books of Physics?
4. By mathematical induction on n, show that for any integer $n \geq 26$, there exist nonnegative integers x, y such that $n=4 x+7 y$.
5. Let $A=\left(\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right)$. For $n \geq 0$, solve for the entries of A^{n} using recurrence relations. Assume $A^{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
6. Find a recurrence relation for a_{n}, the number of ways a sequence of 1 's and 3 's can sum to n. (Here, order matters: for example, $a_{4}=3$ as 4 can be obtained by the sequences $1111,13,31$.)
7. Find the general solution of the following recurrence relation by making an appropriate substitution to transform it into a linear recurrence relation with constant coefficients.

$$
\begin{equation*}
(n+1)^{2} a_{n}-n^{3} a_{n-1}=(n+1)! \tag{10}
\end{equation*}
$$

8. Use generating functions to solve the recurrence relation

$$
\begin{align*}
& a_{n}-2 a_{n-1}-a_{n-2}+2 a_{n-3}=0, \\
& a_{0}=1, \quad a_{1}=2, \quad a_{2}=0 \tag{11}
\end{align*}
$$

