Birla Institute of Technology & Science, Pilani First Semester 2022-2023 MATH F214 (Elementary Real Analysis) Comprehensive Examination Part A (Closed Book)

Time: 120 Min.	Date: December 21,	$2022 \ (Wednesday)$	Max.	Marks: 55
1. Write PART-A on	the top of your answer	sheet.		
2. While answering,	justify your steps. Just	writing the final answer will	receive	no credit.
3. Write END after	the last attempted solu	tion.		
4. You can submit F not spend more th	ART-A any time before an 120 minutes on part	e 11 : 15 AM and start Part -A.	-B. Ide	ally you should
 Let ℝ be a metric spa points of I. (Here I de 	ce with respect to the H notes the set of irration	Euclidean metric and $\mathbb{I} \subseteq \mathbb{R}$. al numbers)	Find al	l the interior [3]
2. Let (X, d) be a metric	space and $\{G_{\alpha}\}$ be any	v collection of subsets of X .		
(a) If G_{α} is open for	each α , then show that	$\bigcup_{\alpha} G_{\alpha} \text{ is open in } X.$		[4]
(b) If G_{α} is closed fo	r each α , then either pr	ove or disprove that $\bigcup_{\alpha} G_{\alpha}$ is	s closed	. [6]
3. Let d be the Euclideat (\mathbb{R}, d) be defined as	n metric or \mathbb{R} and d_{disc}	be the discrete metric on \mathbb{R} .	Let f :	$(\mathbb{R}, d_{disc}) \rightarrow$

$$f(x) = x, \ \forall x \in \mathbb{R}.$$

Either prove or disprove that f is continuous.

- 4. Let $f : [a,b] \to \mathbb{R}$ be continuous. Show that if f(a) < c < f(b), then there exists $x_0 \in (a,b)$ such that $f(x_0) = c$. [10]
- 5. Let $g: \mathbb{R} \to \mathbb{R}$ be a non-zero function such that

$$g(x+y) = g(x)g(y).$$

Show that if g is continuous at x = 0, then g is continuous at every $x \in \mathbb{R}$.

6. Show that a bounded function f on [a, b] is integrable if and only if for each $\epsilon > 0$ there exists a partition P_{ϵ} of [a, b] such that

$$U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon.$$
^[8]

7. Let f be a continuous function on \mathbb{R} and define

$$G(x)=\int_0^{\sin x}f(t)dt,\ x\in\mathbb{R}.$$

Show that G is differentiable on \mathbb{R} and compute G'.

8. Show that $f_n(x) = \frac{nx}{1+n^3x^2}$, $x \in [0,1]$ converges uniformly on [0,1]. [8]

[5]

[4]

[7]