Birla Institute of Technology and Science, Pilani (Pilani Campus)

Elementary Real Analysis (MATH F214)

Mid-Semester Examination

Max. Marks: 60

November 01, 2022

Time: 90 Minutes

[10]

Note: (i) Except for the Q 1, justify your answers and write your arguments clearly. If a results from lectures/textbook is used, it must be stated clearly.

(ii) \mathbb{Q}, \mathbb{I} , and \mathbb{R} denote the set of rational numbers, the set of irrational numbers and the set of real numbers, respectively.

- 1. State(without justification) whether the following statements are true or false:
 - (i) If A is a nonempty, bounded subset of \mathbb{Q} , then $\sup(A) \in \mathbb{Q}$.
 - (ii) There exists an infinite subset of \mathbb{R} with no limit points.
 - (iii) For every $x \in \mathbb{I}$ there exists a sequence of real numbers (x_n) converging to x.
 - (iv) Every finite subset of \mathbb{R} is compact.
 - (v) The set of all binary sequences is countably infinite.
 - (vi) The series $\sum \frac{(-1)^n}{n}$ is absolutely convergent.
 - (vii) Every open cover of \mathbb{R} has a finite subcover.
 - (viii) Every closed subset of \mathbb{R} is compact.
 - (ix) Every bounded sequence is convergent.
 - (x) The set of interior points of \mathbb{I} is the empty set.

2. Show that
$$\inf\left\{\frac{1}{n}: n \in \mathbb{N}\right\} = 0.$$
 [3]

- 3. Let A be a nonempty, bounded subset of \mathbb{R} and $\alpha = \inf(A)$. Show that there exists a sequence (a_n) in A such that $a_n \to \alpha$. [6]
- 4. Determine if the following series is convergent or divergent:

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p} \cdot$$

- 5. Either prove or disprove that the set of all functions $f : \mathbb{N} \to \{0, 1\}$ is countably infinite. [6]
- 6. Show that every contractive sequence of real numbers is convergent. Further, show that converse is not true in general by producing a counterexample. [10]
- 7. Let (X, d) be a metric space. Show that

$$\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$$

is a metric on X.

8. Let (X, d) be a metric space and $\{K_{\alpha}\}$ be a collection of compact subsets of X. If intersection of every finite subcollection of $\{K_{\alpha}\}$ is nonempty, then show that $\bigcap K_{\alpha}$ is nonempty. [8]

[12]

[5]