Birla Institute of Technology and Science, Pilani (Pilani Campus) Elementary Real Analysis (MATH F214)
 Mid-Semester Examination

Max. Marks: 60
November 01, 2022
Time: 90 Minutes
Note: (i) Except for the Q 1, justify your answers and write your arguments clearly. If a results from lectures/textbook is used, it must be stated clearly.
(ii) \mathbb{Q}, \mathbb{I}, and \mathbb{R} denote the set of rational numbers, the set of irrational numbers and the set of real numbers, respectively.

1. State(without justification) whether the following statements are true or false:
(i) If A is a nonempty, bounded subset of \mathbb{Q}, then $\sup (A) \in \mathbb{Q}$.
(ii) There exists an infinite subset of \mathbb{R} with no limit points.
(iii) For every $x \in \mathbb{I}$ there exists a sequence of real numbers $\left(x_{n}\right)$ converging to x.
(iv) Every finite subset of \mathbb{R} is compact.
(v) The set of all binary sequences is countably infinite.
(vi) The series $\sum \frac{(-1)^{n}}{n}$ is absolutely convergent.
(vii) Every open cover of \mathbb{R} has a finite subcover.
(viii) Every closed subset of \mathbb{R} is compact.
(ix) Every bounded sequence is convergent.
(x) The set of interior points of \mathbb{I} is the empty set.
2. Show that $\inf \left\{\frac{1}{n}: n \in \mathbb{N}\right\}=0$.
3. Let A be a nonempty, bounded subset of \mathbb{R} and $\alpha=\inf (A)$. Show that there exists a sequence $\left(a_{n}\right)$ in A such that $a_{n} \rightarrow \alpha$.
4. Determine if the following series is convergent or divergent:

$$
\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}
$$

5. Either prove or disprove that the set of all functions $f: \mathbb{N} \rightarrow\{0,1\}$ is countably infinite.
6. Show that every contractive sequence of real numbers is convergent. Further, show that converse is not true in general by producing a counterexample.
7. Let (X, d) be a metric space. Show that

$$
\begin{equation*}
\rho(x, y)=\frac{d(x, y)}{1+d(x, y)} \tag{12}
\end{equation*}
$$

is a metric on X.
8. Let (X, d) be a metric space and $\left\{K_{\alpha}\right\}$ be a collection of compact subsets of X. If intersection of every finite subcollection of $\left\{K_{\alpha}\right\}$ is nonempty, then show that $\bigcap_{\alpha} K_{\alpha}$ is nonempty.

