BITS PILANI, K K BIRLA GOA CAMPUS
 Department of Mathematics
 Comprehensive Examination
 MATH F214 Elementary Real Analysis

Answer all the questions.

(1) Let $\left(a_{n}\right)$ be a sequence of real numbers. Justify the following statements:
(a) If the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then the series $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) The converse in (a) need not be true.
(c) If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
(d) The converse in (c) need not be true.
(Marks: $4 \times 3=12$)
(2) State whether each of the following metric space (X, d) is complete or not, and justify your answer:
(a) $X=\mathbb{R} \backslash \mathbb{Q}$ with $d(x, y)=|x-y|$ for $x, y \in X$.
(b) X is a non-empty set and d is the discrete metric.
(c) $X=(0,1]$ with $d(x, y)=|x-y|$ for $x, y \in X$.
(d) $X=\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}$ with $d(x, y)=|x-y|$ for $x, y \in X$.
(Marks: $4 \times 2=8$)
(3) Let (X, d) be a metric space and let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be a Cauchy sequences in X. For $n \in \mathbb{N}$, let $a_{n}=d\left(x_{n}, y_{n}\right)$. Show that the sequence $\left(a_{n}\right)$ is a convergent sequence in \mathbb{R}. (Marks: 4)
(4) Let (X, d) be a metric space and $A \subseteq X$.
(a) What is interior of A.
(b) What is the condition under which A is said to be dense in X ?
(c) Prove that A is dense in X iff interior of A^{c} is empty.
(Marks: $2+2+4=8$)
(5) State whether each of the following metric space (X, d) is compact or not, and justify your answer:
(a) $X=[0,1]$ with $d(x, y)=|x-y|$ for $x, y \in X$.
(b) $X=[0,1]$ and d is the discrete metric.
(c) $X=(0,1]$ with $d(x, y)=|x-y|$ for $x, y \in X$.
(d) $X=\{1\} \cup\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}$ with $d(x, y)=|x-y|$ for $x, y \in X$.
(Marks: $4 \times 2=8$)
(6) Show that every compact metric space is complete. Is the converse true? Justify your answer.
(Marks: 6)
(7) Let (X, d) be a metric space. Prove that X is disconnected iff there exists a continuous onto function $f: X \rightarrow\{0,1\}$, where $Y:=\{0,1\}$ is with discrete metric.
(Marks: 6)
(8) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Prove the following:
(a) If f is Riemann integrable, then $g:[a, b] \rightarrow \mathbb{R}$ defined by and $g(x)=\int_{a}^{x} f(t) d t$ for $x \in[a, b]$, is continuous.
(b) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then g as in (a) is differentiable and $g^{\prime}(x)=f(x)$ for every $x \in[a, b]$.
(Marks: $4+4=8$)

