BITS PILANI, K K BIRLA GOA CAMPUS **Department of Mathematics Comprehensive Examination** MATH F214 Elementary Real Analysis

Date: 26.12. 2022

Answer all the questions.

- (1) Let (a_n) be a sequence of real numbers. Justify the following statements:
 - (a) If the series $\sum_{n=1}^{\infty} |a_n|$ converges, then the series $\sum_{n=1}^{\infty} a_n$ converges.
 - (b) The converse $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$ as $n \to \infty$.
 - (d) The converse in (c) need not be true.
- (2) State whether each of the following metric space (X, d) is complete or not, and justify your answer:
 - (a) $X = \mathbb{R} \setminus \mathbb{Q}$ with d(x, y) = |x y| for $x, y \in X$.
 - (b) X is a non-empty set and d is the discrete metric.
 - (c) X = (0, 1] with d(x, y) = |x y| for $x, y \in X$.
 - (d) $X = \{\frac{n}{n+1} : n \in \mathbb{N}\}$ with d(x, y) = |x y| for $x, y \in X$. (Marks: 4x2 = 8)
- (3) Let (X,d) be a metric space and let (x_n) and (y_n) be a Cauchy sequences in X. For $n \in \mathbb{N}$, let $a_n = d(x_n, y_n)$. Show that the sequence (a_n) is a convergent sequence in \mathbb{R} . (Marks: 4)
- (4) Let (X, d) be a metric space and $A \subseteq X$.
 - (a) What is interior of A.
 - (b) What is the condition under which A is said to be dense in X?
 - (c) Prove that A is dense in X iff interior of A^c is empty. (Marks: 2+2+4=8)
- (5) State whether each of the following metric space (X, d) is compact or not, and justify your answer:
 - (a) X = [0, 1] with d(x, y) = |x y| for $x, y \in X$.
 - (b) X = [0, 1] and d is the discrete metric.

 - (c) X = (0, 1] with d(x, y) = |x y| for $x, y \in X$. (d) $X = \{1\} \cup \{\frac{n}{n+1} : n \in \mathbb{N}\}$ with d(x, y) = |x y| for $x, y \in X$. (Marks: $4x^2 = 8$)
- (6) Show that every compact metric space is complete. Is the converse true? Justify your answer.
- (7) Let (X, d) be a metric space. Prove that X is disconnected iff there exists a continuous onto function $f: X \to \{0, 1\}$, where $Y := \{0, 1\}$ is with discrete metric. (Marks: 6)
- (8) Let $f: [a, b] \to \mathbb{R}$ be a bounded function. Prove the following:
 - (a) If f is Riemann integrable, then $g: [a,b] \to \mathbb{R}$ defined by and $g(x) = \int_a^x f(t) dt$ for $x \in [a, b]$, is continuous.
 - (b) If $f:[a,b] \to \mathbb{R}$ is continuous, then g as in (a) is differentiable and g'(x) = f(x) for every (Marks: 4+4 = 8) $x \in [a, b].$

Weightage: 40

(Marks: 4x3=12)

(Marks: 6)