Birla Institute of Technology and Science, Pilani Department of Mathematics MATH F215; Algebra 1 First Semester 2017-2018 Date: 3 December 2017

Time: 90 Minutes

Instructions:

- $\bullet\,$ This question paper has ${\bf SEVEN}$ questions. Answer ${\bf ALL}$ questions.
- Answer of all the subpart of a question must be written together.
- Answer without proper justification will attract zero mark.
- $\bullet\,$ Direct use of unsolved exercise from the text book without proof is ${\bf NOT}$ permissible.
- 1. Prove or disprove the following:
 - (i) The intersection of two distinct maximal ideals of a ring R is a maximal ideal of R. [4]
 - (ii) For the ring $R = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$, the set $S = \{(a, b, c) \in R \mid a + b = c\}$ is a subring of R. [3]
- 2. Find the greatest common divisor of $x^3 2x + 1$ and $x^2 x 2$ in $\mathbb{Z}_5[x]$, and express it as a linear combination of the given polynomials. [5]
- 3. Let ${\cal R}$ be a Euclidean domain. Prove that
 - (i) d(a) = d(-a) for all $a \neq 0 \in R$. [4]
 - (ii) If d(a) = 0 for $a \neq 0 \in R$, then a is unit in R. [3]
- 4. Let R be a ring with unity. Using its elements, we define a ring R' by defining

$$a \oplus b = a + b + 1$$
 and $a \otimes b = ab + a + b$,

where $a, b \in R$ and the addition and multiplication on the right hand side of these relation are those of R. Prove that R is isomorphic to R'. [8]

- 5. Find all the ring homomorphisms from \mathbb{Z} to \mathbb{Z} . [5]
- 6. Prove that any nonzero ideal in the ring $\mathbb{Z}[i] = \{m + ni \mid m, n \in \mathbb{Z}\}$ of Gaussian integers must contain some positive integer. [4]
- 7. Let N and M be two normal subgroups of a group G such that $N \cap M = \{e\}$. Show that for any $n \in N, m \in M, nm = mn$. [4]

Birla Institute of Technology and Science, Pilani Department of Mathematics MATH F215; Algebra 1 First Semester 2017-2018 Date: 3 December 2017

Time: **90** Minutes

Comprehensive Exam [Closed Book]

Max. Marks: $\mathbf{40}$

Instructions:

- $\bullet\,$ This question paper has \mathbf{Five} questions. Answer \mathbf{ALL} questions.
- Answer of all the subpart of a question must be written together.
- Answer without proper justification will attract zero mark.
- 1. Prove or disprove the following:
 - (i) The rings \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ are isomorphic. [4]
 - (ii) Subring of a non-commutative ring is non-commutative. [4]
 - (iii) Let $\langle x^4 + 1 \rangle = \{ (x^4 + 1)f(x) \mid f(x) \in \mathbb{Q}[x] \}$ be an ideal of the polynomial ring $\mathbb{Q}[x]$. Then the quotient ring $\frac{\mathbb{Q}[x]}{\langle x^4 + 1 \rangle}$ is a field. [5]
 - (iv) The mapping $f : \mathbb{Z}_2 \to \mathbb{Z}_2$ defined by $f(n) = n^2 n$ for all $n \in \mathbb{Z}_2$ is a ring homomorphism. [4]
- 2. Define unique factorization domain. Show that the ring $\mathbb{Z}[\sqrt{-7}]$ is not a unique factorization domain. [7]
- 3. Define Euclidean domain. Show that every field F is a Euclidean domain. [4]
- 4. For an integer n_0 , define $\langle n_0 \rangle = \{n_0 a \mid a \in \mathbb{Z}\}$. Prove that $M = \langle n_0 \rangle$ is a maximal ideal of the ring \mathbb{Z} of integers if and only if n_0 is a prime number. [8]
- 5. Let $\sigma = (1\ 2\ 3)(1\ 2\ 5\ 6) \in S_6$. Find the order of σ and then determine σ^{35} . [4]

****END****