Birla Institute of Technology and Science, Pilani
 Department of Mathematics
 MATH F215; Algebra 1

First Semester 2017-2018
Date: 3 December 2017
Time: 90 Minutes Comprehensive Exam [Open Book] Max. Marks: 40

Instructions:

- This question paper has SEVEN questions. Answer ALL questions.
- Answer of all the subpart of a question must be written together.
- Answer without proper justification will attract zero mark.
- Direct use of unsolved exercise from the text book without proof is NOT permissible.

1. Prove or disprove the following:
(i) The intersection of two distinct maximal ideals of a ring R is a maximal ideal of R.
(ii) For the ring $R=\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$, the set $S=\{(a, b, c) \in R \mid a+b=c\}$ is a subring of R.
2. Find the greatest common divisor of $x^{3}-2 x+1$ and $x^{2}-x-2$ in $\mathbb{Z}_{5}[x]$, and express it as a linear combination of the given polynomials.
3. Let R be a Euclidean domain. Prove that
(i) $d(a)=d(-a)$ for all $a \neq 0 \in R$.
(ii) If $d(a)=0$ for $a \neq 0 \in R$, then a is unit in R.
4. Let R be a ring with unity. Using its elements, we define a ring R^{\prime} by defining

$$
a \oplus b=a+b+1 \text { and } a \otimes b=a b+a+b
$$

where $a, b \in R$ and the addition and multiplication on the right hand side of these relation are those of R. Prove that R is isomorphic to R^{\prime}.
5. Find all the ring homomorphisms from \mathbb{Z} to \mathbb{Z}.
6. Prove that any nonzero ideal in the ring $\mathbb{Z}[i]=\{m+n i \mid m, n \in \mathbb{Z}\}$ of Gaussian integers must contain some positive integer.
7. Let N and M be two normal subgroups of a group G such that $N \cap M=\{e\}$. Show that for any $n \in N, m \in M, n m=m n$.

Birla Institute of Technology and Science, Pilani
 Department of Mathematics
 MATH F215; Algebra 1

First Semester 2017-2018
Date: 3 December 2017
Time: 90 Minutes Comprehensive Exam [Closed Book] Max. Marks: 40

Instructions:

- This question paper has Five questions. Answer ALL questions.
- Answer of all the subpart of a question must be written together.
- Answer without proper justification will attract zero mark.

1. Prove or disprove the following:
(i) The rings \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are isomorphic.
(ii) Subring of a non-commutative ring is non-commutative.
(iii) Let $\left\langle x^{4}+1\right\rangle=\left\{\left(x^{4}+1\right) f(x) \mid f(x) \in \mathbb{Q}[x]\right\}$ be an ideal of the polynomial ring $\mathbb{Q}[x]$. Then the quotient ring $\frac{\mathbb{Q}[x]}{\left\langle x^{4}+1\right\rangle}$ is a field.
(iv) The mapping $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ defined by $f(n)=n^{2}-n$ for all $n \in \mathbb{Z}_{2}$ is a ring homomorphism.
2. Define unique factorization domain. Show that the ring $\mathbb{Z}[\sqrt{-7}]$ is not a unique factorization domain.
3. Define Euclidean domain. Show that every field F is a Euclidean domain.
4. For an integer n_{0}, define $\left\langle n_{0}\right\rangle=\left\{n_{0} a \mid a \in \mathbb{Z}\right\}$. Prove that $M=\left\langle n_{0}\right\rangle$ is a maximal ideal of the ring \mathbb{Z} of integers if and only if n_{0} is a prime number.
5. Let $\sigma=(123)(1256) \in S_{6}$. Find the order of σ and then determine σ^{35}.
