Birla Institute of Technology and Science, Pilani
 Department of Mathematics
 MATH F215; Algebra 1

First Semester 2022-2023
Date: 23 December 2022
Time: 90 Minutes Comprehensive Exam [Closed Book] Max. Marks: 45

Instructions:

- This question paper has Fifteen multiple choice questions with only one correct answer. Each correct answer carries 3 marks and wrong one gets $\mathbf{- 1}$.
- Write your answers only in the given boxes.
- Any over-writing in your answer will be considered as unattempted and will carry zero mark.

Name:
ID:

Signature of Invigilator:

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.															

1. The cardinality of the center of the group \mathbb{Z}_{12} is
(A) 1
(B) 2
(C) 4
(D) 12
2. The number of 5 -Sylow subgroups of the group \mathbb{Z}_{20} is
(A) 1
(B) 2
(C) 3
(D) 4
3. The number of all the automorphisms of the group $(\mathbb{Z},+)$ is
(A) 1
(B) 2
(C) 3
(D) 4
4. Consider the ring $R=M_{2}(\mathbb{Z})$ of all 2×2 matrices with integer entries and the subset $S=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]: a \in \mathbb{Z}\right\}$ of R. Then which of the following statement is correct:
(A) S is a subring of R but not an ideal of R
(B) S is an ideal of R
(C) S is neither a subring nor an ideal of R
(D) S is an ideal of R but not a subring of R
5. The number of maximal ideals of the ring \mathbb{Z}_{8} is
(A) 1
(B) 2
(C) 3
(D) 4
6. Let I denote the set of all polynomials in $\mathbb{Z}[x]$ with constant term zero. Then which of the following is correct:
(A) I is not an ideal of $\mathbb{Z}[x]$
(B) I is an ideal of $\mathbb{Z}[x]$ but not a maximal ideal of $\mathbb{Z}[x]$
(C) I is a maximal ideal of $\mathbb{Z}[x]$
(D) I is not a subring of $\mathbb{Z}[x]$
7. Which one of the following statement is not true?
(A) $\mathbb{Z}[\sqrt{3}]$ is a Euclidean domain
(B) $\mathbb{Z}[\sqrt{3}]$ is a principal ideal domain
(C) $\mathbb{Z}[x]$ is a Euclidean domain
(D) \mathbb{Z}_{7} is a Euclidean domain
8. Which one of the following statement is not true?
(A) $\mathbb{Z}[\sqrt{-3}]$ is not a unique factorization domain
(B) $\mathbb{Z}[\sqrt{-6}]$ is not a unique factorization domain
(C) \mathbb{Z}_{6} is a unique factorization domain
(D) \mathbb{Z}_{7} is a unique factorization domain
9. The value(s) of $c \in \mathbb{Z}_{3}$, such that $\frac{\mathbb{Z}_{3}[x]}{\left\langle x^{3}+c x^{2}+[1]\right\rangle}$ is a field, must be
(A) both [0] and [1]
(B) [1] only
(C) [2] only
(D) both [0] and [2]
10. Consider the polynomials $f(x)=x^{3}-6 x+2$ and $g(x)=x^{3}+x^{2}-2 x-1$. Then
(A) $f(x)$ is irreducible over \mathbb{Q} but $g(x)$ is reducible over \mathbb{Q}
(B) $f(x)$ is reducible over \mathbb{Q} but $g(x)$ is irreducible over \mathbb{Q}
(C) both $f(x)$ and $g(x)$ are irreducible over \mathbb{Q}
(D) Neither $f(x)$ nor $g(x)$ is irreducible over \mathbb{Q}
11. Which of the following can not be an order of a finite field?
(A) 3
(B) 5
(C) 16
(D) 18

12 . Which one of the following is a subring of $\mathbb{Z}[i]$?
(A) $\{a+b i \in \mathbb{Z}[i]: a$ and b are even integers $\}$
(B) $\{a+b i \in \mathbb{Z}[i]: a \geq 0\}$
(C) $\{a+b i \in \mathbb{Z}[i]: b \geq 0\}$
(D) $\{a+b i \in \mathbb{Z}[i]: a, b \geq 0\}$
13. The characteristic of the quotient ring $\frac{\mathbb{Z}[i]}{\langle 3+i\rangle}$ is equal to
(A) 1
(B) 5
(C) 10
(D) 15
14. The number of associates of $8+3 i$ in the ring $\mathbb{Z}[i]$ is
(A) 1
(B) 2
(C) 3
(D) 4
15. Which one of the following statement is true?
(A) Integral domain is a field
(B) Every finite integral domain is not a Euclidean domain
(C) Finite integral domain is a field
(D) Divison ring is a field

Birla Institute of Technology and Science, Pilani
 Department of Mathematics
 MATH F215; Algebra 1

First Semester 2022-2023
Date: 23 December 2022
Time: 90 Minutes Comprehensive Exam [Open Book] Max. Marks: 45

Instructions:

- This question paper has SIX questions. Answer ALL questions.
- Answer of all the subpart of a question must be written together.
- Answer without proper justification will attract zero mark.
- Direct use of unsolved exercises from the text book without its solution is NOT permissible.

1. Prove or disprove the following:
(i) The fields \mathbb{R} and \mathbb{C} are isomorphic.
(ii) Any homomorphism of a field into a ring R is either one-one or it takes every element to zero.
(iii) The set $I=\{a+b \sqrt{3} \in \mathbb{Z}[\sqrt{3}] \mid a-b$ is an even integer $\}$ is an ideal of the ring $\mathbb{Z}[\sqrt{3}]=\{a+b \sqrt{3} \mid a, b \in \mathbb{Z}\}$.
2. Use the Euclidean algorithm to find $\operatorname{gcd}\left(x^{8}-1, x^{6}-1\right)$ in $\mathbb{Q}[x]$ and write the obtained gcd as a linear combination of $x^{8}-1$ and $x^{6}-1$.
3. Find an irreducible polynomial of degree 2 over the ring \mathbb{Z}_{5}. Use it to construct a field of 25 elements. Justify your answer.
4. Using fundamental theorem of ring homomorphism, prove that the rings $\mathbb{Z} / 5 \mathbb{Z}$ and \mathbb{Z}_{5} are isomorphic.
5. Let $(G,+)$ be a simple commutative group and R be the set of all homomorphisms from G to G. Then R forms a ring under the operations defined as

$$
(f \oplus g)(x)=f(x)+g(x) ;(f \circ g)(x)=f(g(x)) \text { for all } f, g \in R \text { and } x \in G
$$

Prove that (R, \oplus, \circ) is a division ring.
6. Let G be an infinite cyclic group. Then prove that G has exactly two generators which are inverses of each other.

