Birla Institute of Technology and Science, Pilani Department of Mathematics MATH F215; Algebra 1 First Semester 2022-2023 Date: 23 December 2022 tes Comprehensive Exam [Closed Book] Max. Marks: 45

Time: 90 Minutes

Instructions:

- This question paper has **Fifteen** multiple choice questions with only one correct answer. Each correct answer carries 3 marks and wrong one gets **-1**.
- Write your answers only in the given boxes.
- Any over-writing in your answer will be considered as unattempted and will carry zero mark.

Name:

ID:

Signature of Invigilator:

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.															

- 1. The cardinality of the center of the group \mathbb{Z}_{12} is
 - (A) 1 (B) 2 (C) 4 (D) 12
- 2. The number of 5-Sylow subgroups of the group \mathbb{Z}_{20} is
 - (A) 1 (B) 2 (C) 3 (D) 4

3. The number of all the automorphisms of the group $(\mathbb{Z}, +)$ is (A) 1 (B) 2 (C) 3 (D) 4

- 4. Consider the ring $R = M_2(\mathbb{Z})$ of all 2×2 matrices with integer entries and the subset $S = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \in \mathbb{Z} \right\}$ of R. Then which of the following statement is correct:
 - (A) S is a subring of R but not an ideal of R
 - (B) S is an ideal of R
 - (C) S is neither a subring nor an ideal of R
 - (D) S is an ideal of R but not a subring of R
- 5. The number of maximal ideals of the ring \mathbb{Z}_8 is
 - (A) 1 (B) 2 (C) 3 (D) 4
- 6. Let I denote the set of all polynomials in $\mathbb{Z}[x]$ with constant term zero. Then which of the following is correct:
 - (A) I is not an ideal of $\mathbb{Z}[x]$
 - (B) I is an ideal of $\mathbb{Z}[x]$ but not a maximal ideal of $\mathbb{Z}[x]$
 - (C) I is a maximal ideal of $\mathbb{Z}[x]$
 - (D) I is not a subring of $\mathbb{Z}[x]$
- 7. Which one of the following statement is not true?
 - (A) $\mathbb{Z}[\sqrt{3}]$ is a Euclidean domain
 - (B) $\mathbb{Z}[\sqrt{3}]$ is a principal ideal domain
 - (C) $\mathbb{Z}[x]$ is a Euclidean domain
 - (D) \mathbb{Z}_7 is a Euclidean domain
- 8. Which one of the following statement is not true?
 - (A) $\mathbb{Z}[\sqrt{-3}]$ is not a unique factorization domain
 - (B) $\mathbb{Z}[\sqrt{-6}]$ is not a unique factorization domain
 - (C) \mathbb{Z}_6 is a unique factorization domain
 - (D) \mathbb{Z}_7 is a unique factorization domain

- 9. The value(s) of $c \in \mathbb{Z}_3$, such that $\frac{\mathbb{Z}_3[x]}{\langle x^3 + cx^2 + [1] \rangle}$ is a field, must be (C) [2] only (A) both [0] and [1](B) [1] only (D) both [0] and [2]10. Consider the polynomials $f(x) = x^3 - 6x + 2$ and $g(x) = x^3 + x^2 - 2x - 1$. Then (A) f(x) is irreducible over \mathbb{Q} but g(x) is reducible over \mathbb{Q} (B) f(x) is reducible over \mathbb{Q} but g(x) is irreducible over \mathbb{Q} (C) both f(x) and g(x) are irreducible over \mathbb{Q} (D) Neither f(x) nor g(x) is irreducible over \mathbb{Q} 11. Which of the following can not be an order of a finite field? (B) 5(A) 3 (C) 16 (D) 18 12. Which one of the following is a subring of $\mathbb{Z}[i]$? (A) $\{a + bi \in \mathbb{Z}[i] : a \text{ and } b \text{ are even integers}\}$ (B) $\{a+bi \in \mathbb{Z}[i] : a \ge 0\}$
 - (C) $\{a+bi \in \mathbb{Z}[i] : b \ge 0\}$
 - (D) $\{a + bi \in \mathbb{Z}[i] : a, b \ge 0\}$

13. The characteristic of the quotient ring $\frac{\mathbb{Z}[i]}{\langle 3+i \rangle}$ is equal to

(A) 1 (B) 5 (C) 10 (D) 15

14. The number of associates of 8 + 3i in the ring $\mathbb{Z}[i]$ is

- (A) 1 (B) 2 (C) 3 (D) 4
- 15. Which one of the following statement is true?
 - (A) Integral domain is a field
 - (B) Every finite integral domain is not a Euclidean domain
 - (C) Finite integral domain is a field
 - (D) Divison ring is a field

****END****

Time: 90 Minutes

Max. Marks: 45

[5]

[5]

Instructions:

- This question paper has **SIX** questions. Answer **ALL** questions.
- Answer of all the subpart of a question must be written together.
- Answer without proper justification will attract zero mark.
- Direct use of unsolved exercises from the text book without its solution is **NOT** permissible.
- 1. Prove or disprove the following:
 - (i) The fields \mathbb{R} and \mathbb{C} are isomorphic.
 - (ii) Any homomorphism of a field into a ring R is either one-one or it takes every element to zero. [5]
 - (iii) The set $I = \{a + b\sqrt{3} \in \mathbb{Z}[\sqrt{3}] \mid a b \text{ is an even integer}\}$ is an ideal of the ring $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}.$ [5]
- 2. Use the Euclidean algorithm to find $gcd(x^8 1, x^6 1)$ in $\mathbb{Q}[x]$ and write the obtained gcd as a linear combination of $x^8 1$ and $x^6 1$. [5]
- Find an irreducible polynomial of degree 2 over the ring Z₅. Use it to construct a field of 25 elements. Justify your answer. [5]
- 4. Using fundamental theorem of ring homomorphism, prove that the rings $\mathbb{Z}/5\mathbb{Z}$ and \mathbb{Z}_5 are isomorphic. [10]
- 5. Let (G, +) be a simple commutative group and R be the set of all homomorphisms from G to G. Then R forms a ring under the operations defined as

$$(f \oplus g)(x) = f(x) + g(x)$$
; $(f \circ g)(x) = f(g(x))$ for all $f, g \in R$ and $x \in G$

Prove that (R, \oplus, \circ) is a division ring.

6. Let G be an infinite cyclic group. Then prove that G has exactly two generators which are inverses of each other. [5]

****END****