BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI K K BIRLA GOA CAMPUS COMPREHENSIVE EXAM, ALGEBRA-I, MATH F215 I SEMESTER – 2022-2023

Date: 17/12/2022	Max. Marks: 80	Duration: 180 mts
1. Determine whether	the permutation $(1\ 2\ 3\ 4\ 5\ 6)(1\ 2\ 3)(4\ 5)$	is even or odd. [4]
2. Define the center $Z(o(Z(G)) > 1.$	G) of a group G. If $o(G) = p^n$ where p is	s a prime number then prove that $[2+8]$
3. Write all the conjuga	ate classes of S_3 .	[6]
4. Prove that(a) Every field is an	integral domain.	
(b) Every finite integ	gral domain is a field.	[4+6]
5. Prove that every ho	nomorphic image of a commutative ring	g is isomorphic to a quotient ring.

6. Let R be the commutative ring of all real valued continuous functions on the closed interval [0, 1] under usual addition and product of functions. Let $M = \{f(x) | f(1/4) = 0\}$. Prove that M is an ideal of R. Is M a maximal ideal of R? Is M a prime ideal of R? justify your answers. [4+4+2]

[10]

- 7. Let R be a commutative ring with unity and I be an ideal of R. Prove that I is a prime ideal of R if and only if R/I is an integral domain. [6]
- 8. Define a Euclidean ring. Prove that the integral domain of Gaussian integers $\mathbb{Z}[i]$ is a Euclidean ring. [2+8]
- 9. State and prove Eisenstein criterion of irreducibility of polynomials. Using this, verify whether the polynomial $p(x) = 11x^4 + 15x^2 25x + 10$ is irreducible over the field of rational numbers or not. [2+5+3]
- 10. Is 13 a prime element in the Gussian ring of integers $\mathbb{Z}[i]$? Justify the answer. [4]

-----END------