Comprehensive Examination	(Closed Book)
Course Name: MATH F231 (Number Theory) Max. Time: 180 Minutes	Date: May 5, 2018 (Saturday) Max. Marks: 45
Note:1. Answer all sub-parts together.	
Second Semester, 2017-18 Comprehensive Examination (Closed Book)ourse Name: MATH F231 (Number Theory)Date: May 5, 2018 (Saturday)fax. Time: 180 MinutesMax. Marks: 45ote:1. Answer all sub-parts together2. Start new question from fresh page3. Symbols have their usual meaning4. Please write END at the end of the answer script.[4]2. Prove that ϕ is a multiplicative function.[6]	
3. Symbols have their usual meaning.	Second Semester, 2017-18 Comprehensive Examination (Closed Book) IATH F231 (Number Theory) Date: May 5, 2018 (Saturday) Minutes Max. Marks: 45 all sub-parts together. wax. Marks: 45 all sub-parts together. wax. Marks: 45 w question from fresh page. have their usual meaning. rite END at the end of the answer script. [4] is a multiplicative function. [6] rove: f two primitive roots modulo an odd prime p is a primitive root of p.
4. Please write END at the end of the answer sci	ript.
Q1. State and prove the Euler's theorem.	[4]
Q2. Prove that ϕ is a multiplicative function.	[6]

- quadratic residue of *p*. (c) 17 is a quadratic residue of 33.
- (d) For an odd positive integer a, $a^{2^n} \equiv 1 \pmod{2^{n+2}}$, for $n \ge 1$.
- (e) The only solution of $\phi(mn) = \phi(m) + \phi(n)$, $m, n \in \mathbb{N}$ are (2, 2), (3, 4) and (4, 3).
- (f) The linear system $x \equiv 3 \pmod{4}$, $x \equiv 4 \pmod{5}$, $x \equiv 4 \pmod{6}$ has unique solution modulo 60. [3x6=18]
- Q4. State and prove the Euler's criterion for a least positive residue modulo an odd prime p to be a quadratic residue of p. Hence, conclude whether a primitive root modulo an odd prime p can be a quadratic residue of p or not? [6]
- Q5. State and prove the Gauss' lemma and use it to check whether 6 is a quadratic residue of 19 or not ? [6]
- Q6. Prove that a positive real number is rational iff it can be written as a finite simple continued fraction.

*****END*****