Birla Institute of Technology \& Science, Pilani

Second Semester, 2017-18
Mid Semester Examination (Closed Book)
Course Name: MATH F231 (Number Theory)
Date: March 7, 2018 (Wednesday)
Max. Time: 90 Minutes
Max. Marks: 35
Note:1. Answer all sub-parts together.
2. Start new question from fresh page.
3. Symbols have their usual meaning.
4. Please write END at the end of the answer script.

Q1. Prove or disprove:
(i) The sequence $71,771,7771, \ldots \ldots \ldots$.... has a perfect square.
(ii) For a given $a \in \mathbb{N}$ and $\forall n \in \mathbb{N}, a^{2} \mid\left[(a+1)^{n+1}-a n-(a+1)\right]$

Q2.(a) Let p_{n} be the $n^{\text {th }}$ prime then prove that $p_{n+1} \leq p_{1} p_{2} \ldots \ldots \ldots p_{n}+1$ and hence show that there are at least $n+1$ primes less than $2^{2^{n}}$ for $n \geq 1$.
(b) Prove that there are infinitely many primes that do not belong to any pair of twin primes.

Q3.(a) Let a, b be positive integers and $d=(a, b)$ then $\left(\frac{a}{d}, \frac{b}{d}\right)=1$
(b) Prove that $(a, b c)=(a,(a, b) c)$, where $a, b, c \in \mathbb{N}$.

Q4. Prove that any integer ≥ 2, is either a prime or can be written as a product of prime numbers. Also prove that this factorization into primes is unique except for the order of the factors.

Q5.(a) Prove that $F_{m+n}=F_{m-1} F_{n}+F_{m} F_{n+1}$ where $m \geq 2$ and $n \in \mathbb{N}$.
(b) Using Binet's formula, prove that $F_{n+2}^{2}-F_{n}^{2}=F_{2 n+2}$.

Q6. A theatre charges ₹ 1.80 for adult admissions and ₹ 0.75 for children. On a particular evening the total receipts were ₹ 90 . Assuming that more adults than children were present, find that how many people went to the theatre.

