Birla Institute of Technology and Science, Pilani (Pilani Campus) Second Semester 2022-23

Course Number: MATH F231 (Number Theory) Examination: End-Semester Test

Date of Examination: 12.05.2023 Maximum Duration: 180 min

Maximum Marks: 90

General Instructions.

- 1. There are two parts of 45 marks each: Part A is Closed Book; Part B is Open Book.

 Part A must be completed latest by 11:00 AM. You may get the question paper for Part B immediately if you submit Part A before 11:00 AM.
- 2. Calculators are allowed.
- 3. Symbols have their usual meaning unless stated otherwise.
- 4. If multiple answers are written for the same question, only the first one will be graded.
- 5. Justify all answers. You will be graded on the correctness of your solution as well as the quality of your explanation.

Part A

Q1. Let p be a prime and let $a, b \in \mathbb{Z}$ with gcd(a, p) = gcd(b, p) = 1. Suppose $a^p \equiv b^p \pmod{p}$. Prove that $a \equiv b \pmod{p}$. Hence prove that $a^p \equiv b^p \pmod{p^2}$.

Q2. Let p be a prime. For $m \in \mathbb{N}$, let $\mu(p,m)$ denote the value of the Möbius function μ at gcd(p,m). Prove that

$$\sum_{d|n} \mu(d)\mu(p,d) = \begin{cases} 1 & \text{if } n = 1, \\ 2 & \text{if } n = p^k \text{ for some } k \ge 1, \\ 0 & \text{otherwise.} \end{cases}$$
 [10]

Q3.

- (i) Let $n \ge 2$. Prove that the sum of the positive integers less than n and coprime to n is $\frac{1}{2}n\varphi(n)$. [4]
- (ii) Let p be a prime. Prove that the product of the $\varphi(p-1)$ primitive roots modulo p is congruent to $(-1)^{\varphi(p-1)}$ modulo p.

Q4. Compute
$$\left(\frac{773}{343}\right)$$
. [5]

Q5. Let a and b be coprime odd positive integers. Suppose $\epsilon, \eta \in \{-1, 1\}$. Prove that

$$\left(\frac{\epsilon a}{b}\right)\left(\frac{\eta b}{a}\right) = (-1)^t,$$

where

$$t = \left(\frac{\epsilon a - 1}{2} \times \frac{\eta b - 1}{2}\right) + \left(\frac{\epsilon - 1}{2} \times \frac{\eta - 1}{2}\right).$$
 [10]

Q6. Express $\frac{118}{101}$ as a finite simple continued fraction. Hence find a particular solution of the linear Diophantine equation

$$118X - 101Y = -11. ag{6}$$

ALL THE BEST

Birla Institute of Technology and Science, Pilani (Pilani Campus) Second Semester 2022-23

Course Number: MATH F231 (Number Theory) Examination: End-Semester Test

Date of Examination: 12.05.2023 Maximum Duration: 180 min

Maximum Marks: 90

General Instructions.

- There are two parts of 45 marks each: Part A is Closed Book; Part B is Open Book.
 Part A must be completed latest by 11:00 AM. You may get the question paper for Part B immediately if you submit Part A before 11:00 AM.
- 2. Calculators are allowed.
- 3. Symbols have their usual meaning unless stated otherwise.
- 4. If multiple answers are written for the same question, only the first one will be graded.
- 5. Justify all answers. You will be graded on the correctness of your solution as well as the quality of your explanation.

Part B

- **Q1.** Suppose a is a positive real number such that $a + \frac{1}{a} \in \mathbb{Z}$. Use the Well Ordering Principle to prove that $a^n + \frac{1}{a^n} \in \mathbb{Z}$ for all positive integers n. Do not use PMI/PSI directly. [8]
- **Q2.** Let $m \in \mathbb{N}$ and let a be an integer coprime to m. Prove that there exist integers x and y with $1 \le x, y \le \sqrt{m}$ such that either ax y or ax + y is divisible by m.

 (Hint: Pigeonhole Principle)

Q3. Solve the Diophantine equation

$$X^2 - 16 = Y^3. ag{13}$$

Q4. Using the method in the proof of the Chinese Remainder Theorem, find the least positive integer x satisfying the following system of congruences.

$$x \equiv -1 \pmod{125}$$
,

$$x \equiv -2 \pmod{343}$$
.

[7]

Q5. Let $m, n \in \mathbb{N}$ with $m - n \ge 1$ and n odd. Prove that

$$F_{m+n} + F_{m-n} = F_n L_m.$$

Hence prove that $F_{4n} + 1$ is composite for all positive integers n.

[7]

ALL THE BEST