Birla Institute of Technology \& Science, Pilani

Comprehensive Exam (Closed Book) Part A
 Course Name: Mathematical Methods (MATH F241) Date: 05-05-18

Max. Time: 90 Minutes
Max. Marks: 42

1. Prove that the Fourier cosine transform of $f=\cos \left(\frac{x^{2}}{2}-\frac{\pi}{8}\right)$ is self-reciprocal. [8]
2. Find the 4-point inverse DFT of the discrete signal U_{k} with period 4 given by $U_{k}=\{0,0,4,0\}$.
3. Derive the Euler's equation of the problem

$$
I=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}, y^{\prime \prime}\right) d x \quad \text { with } \quad \eta\left(x_{1}\right)=\eta\left(x_{2}\right)=\eta^{\prime}\left(x_{1}\right)=\eta^{\prime}\left(x_{2}\right)=0
$$

4. Show that the solution of partial differential equation $\frac{\partial U}{\partial t}=\frac{\partial^{2} U}{\partial x^{2}}$ if

$$
\begin{align*}
& \frac{\partial U}{\partial x}(0, t)=0, \quad U(x, 0)=\left\{\begin{array}{l}
x, 0 \leq x \leq 1 \\
0, \quad x>1
\end{array} \quad \text { and } U(x, t) \quad\right. \text { is bounded where } \\
& x>0, t>0 \text { is } \quad U(x, t)=\left(\frac{2}{\pi}\right) \int_{0}^{\infty}\left(\frac{\sin \xi}{\xi}+\frac{\cos \xi-1}{\xi^{2}}\right) e^{-\xi^{2} t} \cos \xi x d \xi . \tag{8}
\end{align*}
$$

5. State and prove Hamilton's principle in its most general form.
6. Find the extremal of isoperimetric problem $I[y(x)]=\int_{0}^{\pi}\left(y^{\prime 2}-y^{2}\right) d x$ subject to the constraint $\int_{0}^{\pi} y d x=1$ under the conditions $y(0)=0, y(\pi)=1$.
