Birla Institute of Technology \& Science, Pilani
 First Semester 2021-2022, MATH F241 (Mathematical Methods)
 Compre Examination (Part-A, CB)

Time: 90 Min.
Date: May 12, 2022 (Thursday) Max. Marks: 45

1. Answer all parts of a question in continuation.
2. Write END in the answer sheet just after the final solution.
3. (a) Solve the integral equation

$$
\int_{0}^{\infty} F(x) \cos (s x) d x=\left\{\begin{array}{l}
1-s, \quad \text { when } 0 \leq s \leq 1 \\
0, \quad \text { when } \quad s>1,
\end{array}\right.
$$

with the help of Fourier Cosine/Sine transform. Hence, letting $s \rightarrow 0$, find the value of $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t$.
(b) Solve the IVP:

$$
u_{t t}=16 u_{x x}, \quad-\infty<x<\infty, t>0
$$

with ICs $u(x, 0)=x \sin x, u_{t}(x, 0)=0,-\infty<x<\infty$ and $u(x, t), u_{x}(x, t) \rightarrow 0$ as $|x| \rightarrow \infty$.
(c) Prove that $\mathcal{F}(f(x) * g(x))=\mathcal{F}(\xi) \mathcal{G}(\xi)$, where $\mathcal{F}(\xi)$ and $\mathcal{G}(\xi)$ are the Fourier transform of $f(x)$ and $g(x)$, respectively. Hence or otherwise, show that

$$
\frac{d}{d x}\{f(x) * g(x)\}=f^{\prime}(x) * g(x)
$$

2. (a) Find the general solution of the extremal of the functional

$$
I[z(x, y)]=\iint\left(\frac{p^{2} x y}{2}-\frac{q x^{2} y^{2}}{2}\right) d x d y, \quad \text { where } \quad p=\partial z / \partial x, q=\partial z / \partial y
$$

(b) Determine the extremal(s) of the functional

$$
I[y(x), z(x)]=\int_{0}^{\pi}\left\{2 y z-2 y^{2}+\left(y^{\prime}\right)^{2}-\left(z^{\prime}\right)^{2}\right\} d x
$$

which satisfies the boundary conditions $y(0)=z(0)=0$ and $y(\pi)=z(\pi)=1$.
(c) Find the extremal of the functional

$$
\begin{equation*}
\int_{0}^{\pi}\left\{\left(y^{\prime}\right)^{2}-y^{2}\right\} d x \tag{8}
\end{equation*}
$$

under the conditions $y(0)=0, y(\pi)=1$ and subject to the constraint $\int_{0}^{\pi} y d x=1$.

Birla Institute of Technology \& Science, Pilani
 First Semester 2021-2022, MATH F241 (Mathematical Methods)
 Compre Examination (Part-B, OB)

Time: 90 Min. Date: May 12, 2022 (Thursday) Max. Marks: 45

1. Answer all parts of a question in continuation.
2. Write END in the answer sheet just after the final solution.
3. (a) Prove or disprove that

$$
\int_{-\infty}^{\infty} \delta(x-y) \delta(y-a) d y=\delta(x-a)
$$

(b) Find the adjoint equation and adjoint boundary condition of the system

$$
\begin{equation*}
\left(\frac{x+1}{x}\right) \frac{d^{2} y}{d x^{2}}-\left(\frac{1}{x^{2}}\right) \frac{d y}{d x}+\frac{1}{x^{3}} y=0, \quad y(1)+y^{\prime}(1)=0, y(2)=0 . \tag{7}
\end{equation*}
$$

Is the operator self-adjoint?
(c) Let $R(x, t ; \lambda)=\sum_{m=1}^{\infty} \lambda^{m-1} K_{m}(x, t)$ be the resolvent kernel of a Fredholm integral equation [7]

$$
y(x)=f(x)+\lambda \int_{a}^{b} K(x, t) y(t) d t
$$

then prove or disprove that

$$
R(x, t ; \lambda)=K(x, t)+\lambda \int_{a}^{b} K(x, z) R(z, t ; \lambda) d z
$$

(d) Approximate the kernel by the sum of the first two terms in its Taylor series expansion and then solve the integral equation

$$
y(x)=e^{x}-x-\int_{0}^{1} x\left(e^{x t}-1\right) y(t) d t .
$$

2. (a) Form the system of equations which determines the approximate values of the solution of equation

$$
x^{2}=\int_{0}^{1} K(x, \xi) y(\xi) d \xi
$$

at the points $x_{1}=0, x_{2}=1 / 4, x_{3}=1 / 2, x_{4}=3 / 4$ and $x_{5}=1$ with kernel

$$
K(x, \xi)=\left\{\begin{array}{lll}
x(1-\xi), & \text { when } \quad x>\xi \\
\xi(1-x), & \text { when } \quad x<\xi
\end{array}\right.
$$

(b) Solve the functional

$$
I[y]=\int_{0}^{1}\left\{\left(y^{\prime}\right)^{2}+2 x y\right\} d x
$$

by using Rayleigh-Ritz method. Use cubic polynomial trial function $y(x) \approx c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$ with $y(0)=0$ and $y^{\prime}(1)=1$.

