Birla Institute of Technology \& Science, Pilani
 First Semester 2021-2022, MATH F241 (Mathematical Methods)
 Mid-Semester Examination

Time: 90 Min. Date: March 11, 2022 (Friday) Max. Marks: 70

1. Answer all parts of a question in continuation.
2. Write END in the answer sheet just after the final solution.
3. (a) Convert the IVP

$$
y^{\prime \prime}-\sin (x) y^{\prime}+e^{x} y=x
$$

with initial conditions $y(0)=1, y^{\prime}(0)=-1$ to a Volterra equation of the second kind.
(b) Solve the equation $y^{\prime \prime}=1$ with given conditions $y(0)=y(1)=0$ by using Green's function. [10]
(c) Determine the resolvent kernel for the Fredholm integral equation (IE)

$$
\begin{equation*}
y(x)=\frac{5 x}{6}+\frac{1}{2} \int_{0}^{1} x t y(t) d t, \tag{12}
\end{equation*}
$$

and hence, find the solution of the IE.
2. (a) Consider the IE

$$
\sin \frac{\pi x}{2}=\int_{0}^{1} K(x, t) y(t) d t
$$

where

$$
K(x, t)=\left\{\begin{array}{lc}
x, & \text { when } \quad x<t \\
t, & \text { when } \quad x>t
\end{array}\right.
$$

Obtain an approximate solution of the equation by assuming $y(x) \approx c_{1}+c_{2} x+c_{3} x^{2}$, and using the method of collocation at the points $x=0, \frac{1}{2}, 1$.
(b) Apply the method of least squares to solve the integral equation

$$
y(x)=24+\int_{0}^{1} K(x, t) y(t) d t
$$

where

$$
K(x, t)=\left\{\begin{array}{lc}
x, & \text { when } \quad x<t \tag{12}\\
t, & \text { when } \quad x>t
\end{array}\right.
$$

by assuming $y(x) \approx c_{1}+c_{2} x$.
(c) Using Hilbert-Schmidt theorem, find the solution of the following symmetrical integral equation

$$
\begin{equation*}
y(x)=\left(x^{2}+1\right)+\lambda \int_{-1}^{1}\left(x t+x^{2} t^{2}\right) y(t) d t \tag{14}
\end{equation*}
$$

when λ is not an eigenvalue.

