BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI K K BIRLA - GOA CAMPUS

SECOND SEMESTER 2022-2023
 COMPREHENSIVE EXAMINATION (CLOSED BOOK)

MATHEMATICAL METHODS
Date: May 11, 2023
MATH F241
Day: Thursday
Time: 3 Hours
\qquad
INSTRUCTIONS: 1. There are 6 questions. All questions are compulsory. 2. Write all the steps clearly and give explanations for full credit. 3. Number all the pages of your answer book and make a question-page index on the front page of the main answer sheet. A penalty of two marks will be imposed in case the index is incomplete. 4. Calculator exchange is not allowed.

1. (a) Let $f(x)$ be a continuous function in $[a, b] \subset \mathbb{R}$ such that $\int_{a}^{b} f(x) g^{\prime}(x) d x=0$ for every function $g(x) \in C^{1}(a, b)$ with $g(a)=0=g(b)$. Show that $f(x)$ is constant for all $x \in[a, b]$.
(b) Find the extremal of the isoparametric problem $J(y(x))=\frac{1}{2} \int_{0}^{\pi / 2}\left(y^{2}-y^{\prime 2}\right) d x$ with boundary conditions $y(0)=0, y(\pi / 2)=1$ and the subsidiary condition $\int_{0}^{\pi / 2} y d x=$ $3-\frac{\pi}{2}$.
2. (a) If $y(x)$ is an extremizing function for

$$
J(y)=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x, \quad y\left(x_{0}\right)=y_{0} \text { and } y\left(x_{1}\right)=y_{1}
$$

Then show show that the first variation $\delta J(y)=0$.
(b) Find an approximate solution of the following problem of minimizing the functional using Ritz method (Use one term approximation to write your solution)

$$
J(y(x))=\int_{0}^{1}\left(y^{\prime 2}+y^{2}+2 x y\right) d x, y(0)=0 \text { and } y(1)=1 .
$$

3. Find the extremal of the following functional

$$
J(u(x, y))=\iint_{R}\left(u_{x}^{2}+u_{y}^{2}+2 u f(x, y)\right) d x d y .
$$

If $f(x, y)=0$ and $u(x, y)$ satisfies the initial condition $u(x, 0)=2$ with $u(x, y) \rightarrow 0$ as $y \rightarrow$ $\infty,-\infty<x<\infty$, then find the solution of the above extremal using Fourier Transform.
4. (a) Construct the Green's function for the boundary value problem (BVP)

$$
y^{\prime \prime}+4 y=0, \quad y(0)=0, \quad y(1)=0
$$

(b) Find the resolvent kernel and solve the following integral equation

$$
y(x)=x+\int_{0}^{x}(t-x) y(t) d t .
$$

5. (a) Solve the following Fredholm integral equation

$$
y(x)=x+2 \int_{0}^{1}\left(x t^{2}+x^{2} t\right) y(t) d t .
$$

(b) Transform the following BVP

$$
\frac{d^{2} y}{d x^{2}}+x y=1, \quad y(0)=y(1)=0
$$

into integral equation. Conversely, show that the reduced integral equation satisfies the BVP.
6. Let $f(x)$ is a piece wise continuously differentiable and absolutely integrable function with $F(\omega)=\mathcal{F}[f(x)]$. Then show that
(i) $F(\omega)$ is bounded for $-\infty<\omega<\infty$,
(ii) $F(\omega)$ is continuous for $-\infty<\omega<\infty$.

ALL THE BEST

