BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI K K BIRLA - GOA CAMPUS

SECOND SEMESTER 2022-2023

MID SEMESTER EXAM (CLOSED BOOK)

MATHEMATICAL METHODS

Date: March 17, 2023
Day: Friday

MATH F241
Time: 90 Minutes
Max. Marks: 60

INSTRUCTIONS: 1 . There are 5 questions. All questions are compulsory. 2. Write all the steps clearly and give explanations for full credit. 3. Number all the pages of your answer book and make a question-page index on the front page of the main answer sheet. A penalty of two marks will be imposed in case the index is incomplete. 4. Calculator exchange is not allowed.

1. (a) Find the Fourier series of the function $f(x)=|x|,-\pi<x<\pi$ such that $f(x+2 \pi)=$ $f(x)$ and use it to prove that

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\frac{\pi^{2}}{8}
$$

(b) If $\tilde{y}(x)$ is an extremal of the functional $J(y)=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x$, then show that the Euler-Lagrange equation can also be written as

$$
\frac{d}{d x}\left(F-\tilde{y}^{\prime} \frac{\partial F}{\partial \tilde{y}}\right)-\frac{\partial F}{\partial x}=0 .
$$

Also discuss the case when F is independent of x.
2. (a) Show that the Euler-Lagrange equation for the functional $J(y)=\int_{x_{1}}^{x_{2}} f(x, y) \sqrt{1+y^{\prime 2}} d x$ has the form

$$
f_{y}-f_{x} y^{\prime}-\frac{f y^{\prime \prime}}{1+y^{\prime 2}}=0
$$

(b) Use it to find an extremal for the functional

$$
J(y)=\int_{1}^{2} \frac{\sqrt{1+y^{\prime 2}}}{x} d x, y(1)=y(2)=1
$$

3. (a) Prove the following integral identity

$$
\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x=\int_{-\infty}^{\infty} F(\omega) \overline{G(\omega)} d \omega
$$

where $F(\omega)$ and $G(\omega)$ are the Fourier transforms of $f(x)$ and $g(x)$, respectively.
(b) Use the appropriate Fourier transform (sine/cosine) to evaluate the integral

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+9\right)^{2}}
$$

4. (a) Prove the following Parseva'l theorem for Fourier series on $[-\pi, \pi]$

$$
\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi}(f(x))^{2} d x
$$

where a_{0}, a_{n} and b_{n} are the Fourier coefficients of $f(x),-\pi<x<\pi$.
(b) If $\mathcal{F}(f(x))=F(\omega)$ and $\mathcal{F}(g(x))=G(\omega)$ then show that

$$
\begin{equation*}
\mathcal{F}[(f * g)(x)]=F(\omega) G(\omega) \tag{5}
\end{equation*}
$$

where $(f * g)(x)$ represents the convolution of $f(x)$ and $g(x)$.
5. (a) Solve the following ODE using Fourier transform

$$
3 \frac{d y}{d t}+2 y=\delta(t)
$$

where $y(t) \rightarrow 0$ as $t \rightarrow \infty$.
(b) Solve the following PDE using Fourier transform

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\delta(x) \delta(t),-\infty<x<\infty, t>0 \\
u(x, 0)=\delta(x), u(x, t) \rightarrow 0 \text { as }|x| \rightarrow \infty
\end{gathered}
$$

