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1. Determine the resolvant kernel associated with  xxK ),( in the interval (0,1) in the 

form of a power series in   , obtaining the first three non zero terms.                           [6] 

2. Find the Fourier transform of  
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4. Derive the Euler's equation of the problem   
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5. Find the extremal of the functional   dx
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6. A particle of mass 2 m  falling vertically under the action of gravity and its motion is 

restricted by a force numerically equal to a constant c  times of its square of distance x . 

Find the Lagrangian L and hence, find the equation of motion of the particle.                  [6] 

 

7. Derive Hamilton’s principle in its most general form under suitable assumptions.            [6] 
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1.  Solve the following integral equation:    
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2.  Using Rayleigh-Ritz method find the first approximate solution of the differential 

equation 022)1( 2  yyxyx  with 1)1(,0)0(  yy . (Use the 

assumption 2

321)( xcxccxy  for the form of trail solution).                                  [8] 

3.    Using calculus of variations, find the shortest distance between 422  yx and 

62  yx .                                                                                                                [10] 

4. Find the extremal of isoperimetric problem dxyxxyI )
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5. By Fourier transform, evaluate 
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6.  Find the bounded solution of partial differential equation 
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