Birla Institute of Technology \& Science, Pilani

Comprehensive Exam (Closed Book) Part A

Course Name : Mathematical Methods (MATH F241) Date: 06-05-23
Max. Time: 90 Minutes
Max. Marks: 46

1. Determine the resolvant kernel associated with $K(x, \xi)=x \xi$ in the interval $(0,1)$ in the form of a power series in λ, obtaining the first three non zero terms.
2. Find the Fourier transform of $e^{-9(x-4)^{2}}$
3. Given that $f[f(x)]=-2 \sqrt{\frac{2}{\pi}}\left(\frac{\xi \cos \xi-\sin \xi}{\xi^{3}}\right)$, where $f(x)=\left\{\begin{array}{ll}1-x^{2}, & |x| \leq 1 \\ 0, & |x|>1\end{array}\right.$. Using
the inversion formula for Fourier transform, evaluate the integral $\int_{0}^{\infty}\left(\frac{x \cos x-\sin x}{x^{3}}\right) \cos \frac{x}{2} d x$.
4. Derive the Euler's equation of the problem

$$
\begin{equation*}
I=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}, y^{\prime \prime}\right) d x \quad \text { with } \quad \eta\left(x_{1}\right)=\eta\left(x_{2}\right)=\eta^{\prime}\left(x_{1}\right)=\eta^{\prime}\left(x_{2}\right)=0 \tag{6}
\end{equation*}
$$

5. Find the extremal of the functional $I[y(x)]=\int_{x 0}^{x 1}\left(y^{\prime \prime 2}-2 y^{\prime 2}+y^{2}-2 y \sin x\right) d x$.
6. A particle of mass $2 m$ falling vertically under the action of gravity and its motion is restricted by a force numerically equal to a constant c times of its square of distance x. Find the Lagrangian L and hence, find the equation of motion of the particle.
7. Derive Hamilton's principle in its most general form under suitable assumptions.

Birla Institute of Technology \& Science, Pilani

Comprehensive Exam
Course Name: Mathematical Methods (MATH F241)

Part B
Date: 06-05-23

Max. Time: 90 Minutes

1. Solve the following integral equation:
$y(x)=x+\lambda \int_{-\pi}^{\pi}\left(x \cos \xi+\xi^{2} \sin x+\cos x \sin \xi\right) y(\xi) d \xi$.
2. Using Rayleigh-Ritz method find the first approximate solution of the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 \quad$ with $\quad y(0)=0, y(1)=1$. (Use the assumption $y(x) \approx c_{1}+c_{2} x+c_{3} x^{2}$ for the form of trail solution).
3. Using calculus of variations, find the shortest distance between $x^{2}+y^{2}=4$ and $2 x+y=6$.
4. Find the extremal of isoperimetric problem $I[y(x)]=\int_{0}^{1}\left(x^{2}-y^{2}\right) d x$ such that.
$I[y(x)]=\int_{0}^{1} y^{2} d x=2$ and passing through the points $P(0,0)$ and $Q(1,0)$.
5. By Fourier transform, evaluate $\int_{0}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}, a>0$.
6. Find the bounded solution of partial differential equation $\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}$ if $u(0, t)=0, \quad u(x, 0)=e^{-x}, x>0 \quad$ and $U(x, t)$ is bounded where $x>0, t>0$.
