Birla Institute of Technology \& Science, Pilani
 MATH F243: Graphs and Networks End-Semester Examination (Open Book)
 May 15, 2023
 Time: 105 Minutes

Max. Marks: 48

Note: Calculators are not allowed. No marks will be awarded if proper justification is missing.
Q. 1 Let D be a simple digraph of order $n, n \geq 3$. Write the maximum and minimum number of $\operatorname{arcs} D$ can have (in terms of n), when D is weakly connected and strongly connected.
Q. 2 Compute the number of labelled trees on 5 vertices.
Q. 3 Compute the number of spanning trees (in terms of s) for $K_{2, s}, s \geq 2$.
Q. 4 Perform a depth first search on the tree in Figure 1, starting with vertex a (when there is a choice of vertices to visit, always visit the one which comes first in alphabetical order).

Figure 1:
Q. 5 Let G be a simple connected graph with at least two vertices. Prove or disprove that $\kappa(G) \leq \frac{2 m}{n}$.
Q. 6 Let A be the adjacency matrix of some graph G. Find $\left[A^{k}\right]_{i, j}$ for $1 \leq k<d\left(v_{i}, v_{j}\right)$.
Q. 7 For n odd, identify a class of graphs to show that the condition $\operatorname{deg}(v) \geq n / 2$ in the statement of Dirac's theorem, cannot be replaced by $\operatorname{deg}(v) \geq(n-1) / 2$.
Q. 8 Show how the analysis of the flows in a network with several sources and sinks can be reduced to the standard case by the addition of a new 'source vertex' and 'sink vertex'.

Birla Institute of Technology \& Science, Pilani
 MATH F243: Graphs and Networks End-Semester Examination (Closed Book)
 May 15, 2023
 Time: 75 Minutes

Max. Marks: 42
Note: Calculators are not allowed. No marks will be awarded if proper justification is missing.
Q. 1 A graph is called outerplanar if it has a drawing in which every vertex lies on the boundary of the outer face. Show that if a graph is outerplanar, then it contains neither K_{4} nor $K_{2,3}$ as a minor.
Q. 2 Let G be a simple connected graph with n vertices and $n+2$ edges. Prove or disprove: G is planar.
Q. 3 Find the crossing number of $K_{4,3}$.
Q. 4 For a simple connected graph G with n vertices, let $\chi(G)=n$. By contradiction, prove that $G=K_{n}$.
Q. 5 Let G be a simple connected 3-regular Hamiltonian graph, then compute $\chi^{\prime}(G)$.
Q. 6 Draw a simple connected, 3-regular graph that has both a cut vertex and a perfect matching. Also, highlight the perfect matching.
Q. 7 Let T be a tree of order 20 and 12 be the maximum size of an independent set in T. Compute $\alpha^{\prime}(T)$.

