[8]

Note: Calculators are not allowed. No marks will be awarded if proper justification is missing.

- **Q.1** Let *D* be a simple digraph of order $n, n \ge 3$. Write the maximum and minimum number of arcs *D* can have (in terms of *n*), when *D* is weakly connected and strongly connected. [8]
- Q.2 Compute the number of labelled trees on 5 vertices.
- **Q.3** Compute the number of spanning trees (in terms of s) for $K_{2,s}$, $s \ge 2$. [6]
- Q.4 Perform a depth first search on the tree in Figure 1, starting with vertex a (when there is a choice of vertices to visit, always visit the one which comes first in alphabetical order).

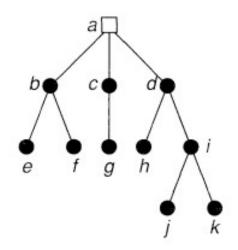


Figure 1:

- **Q.5** Let G be a simple connected graph with at least two vertices. Prove or disprove that $\kappa(G) \leq \frac{2m}{n}$. [6]
- **Q.6** Let A be the adjacency matrix of some graph G. Find $[A^k]_{i,j}$ for $1 \le k < d(v_i, v_j)$. [4]
- **Q.7** For *n* odd, identify a class of graphs to show that the condition $\deg(v) \ge n/2$ in the statement of Dirac's theorem, cannot be replaced by $\deg(v) \ge (n-1)/2$. [6]
- Q.8 Show how the analysis of the flows in a network with several sources and sinks can be reduced to the standard case by the addition of a new 'source vertex' and 'sink vertex'.

Max. Marks: 42	May 15, 2023	Time: 75 Minutes

Note: Calculators are not allowed. No marks will be awarded if proper justification is missing.

- Q.1 A graph is called outerplanar if it has a drawing in which every vertex lies on the boundary of the outer face. Show that if a graph is outerplanar, then it contains neither K_4 nor $K_{2,3}$ as a minor. [6]
- **Q.2** Let G be a simple connected graph with n vertices and n + 2 edges. Prove or disprove: G is planar. [6]

[6]

- **Q.3** Find the crossing number of $K_{4,3}$.
- **Q.4** For a simple connected graph G with n vertices, let $\chi(G) = n$. By contradiction, prove that $G = K_n$. [6]
- **Q.5** Let G be a simple connected 3-regular Hamiltonian graph, then compute $\chi'(G)$. [6]
- Q.6 Draw a simple connected, 3-regular graph that has both a cut vertex and a perfect matching.[6]
- **Q.7** Let T be a tree of order 20 and 12 be the maximum size of an independent set in T. Compute $\alpha'(T)$. [6]

-End –